PolyRoad: Polyline Transformer for Topological Road-Boundary Detection

边界(拓扑) 地质学 拓扑(电路) 遥感 计算机科学 数学 数学分析 组合数学
作者
Yuan Hu,Zhibin Wang,Zhou Huang,Yu Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2023.3344103
摘要

Topological road-boundary detection using remote sensing imagery plays a critical role in creating high-definition (HD) maps and enabling autonomous driving. Previous approaches follow an iterative graph-growing paradigm for road-boundary extraction, where road boundaries are predicted vertex by vertex and instance by instance to output a graph, resulting in limitations of low inference speed. In this work, we formulate the road boundaries as polylines instead of a graph and propose a novel polyline transformer for topological road-boundary detection, termed PolyRoad. PolyRoad is built on the transformer architecture and is capable of detecting all road boundaries in parallel, which greatly improves the training and inference speed compared with the graph-based methods. To perform bipartite matching between the ground truth and predicted polylines, we develop a polyline matching cost to measure the distance, considering the order of open and closed polylines. In addition, we propose three different losses for supervising polyline learning: the order-oriented $L1$ loss, direction loss, and mask loss. The order-oriented $L1$ loss provides the point-level supervision to constrain the absolute position of each point of the road-boundary polylines. The direction loss provides the direction-level supervision to constrain the geometry shape of the predicted polylines by supervising the relative position of adjacent points. The mask loss provides the pixel-level supervision of the predicted polylines by converting the vector-format polylines into raster-format binary masks. Comprehensive experiments are conducted on the Topo-boundary dataset. Quantitative and qualitative results show that PolyRoad achieves superior performance than prior methods in both pixel-level and geometry-level metrics. More notably, PolyRoad achieves $3.37 \times $ and $22.85 \times $ faster inference speeds than Enhanced-iCurb and VecRoad, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助晓宇采纳,获得10
5秒前
默默完成签到 ,获得积分10
5秒前
8秒前
8秒前
英俊的铭应助晓宇采纳,获得10
14秒前
都是发布了新的文献求助10
14秒前
QIN完成签到,获得积分10
16秒前
李念给李念的求助进行了留言
23秒前
23秒前
26秒前
陌路发布了新的文献求助10
27秒前
HJJHJH发布了新的文献求助20
29秒前
领导范儿应助小高同学采纳,获得10
29秒前
思源应助认真的汉堡采纳,获得10
31秒前
情怀应助晓宇采纳,获得10
31秒前
PTDRA发布了新的文献求助10
33秒前
科研通AI2S应助HJJHJH采纳,获得10
34秒前
ChrisKim完成签到,获得积分10
35秒前
42秒前
清爽的柚子完成签到 ,获得积分10
48秒前
cdercder发布了新的文献求助10
49秒前
55秒前
hunbaekkkkk完成签到 ,获得积分10
55秒前
58秒前
yan完成签到,获得积分10
58秒前
59秒前
Liuu完成签到,获得积分10
1分钟前
1分钟前
yan发布了新的文献求助10
1分钟前
kukudou2发布了新的文献求助10
1分钟前
1分钟前
尘默发布了新的文献求助10
1分钟前
1分钟前
CX完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李广辉发布了新的文献求助10
1分钟前
风中的元灵完成签到,获得积分10
1分钟前
wss123456发布了新的文献求助10
1分钟前
wss123456完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385