已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparse transformer with local and seasonal adaptation for multivariate time series forecasting

计算机科学 多元统计 水准点(测量) 数据挖掘 时间序列 序列(生物学) 地点 机器学习 人工智能 生物 语言学 哲学 大地测量学 遗传学 地理
作者
Yifan Zhang,Rui Wu,Sergiu M. Dascalu,J. S. Harris
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:4
标识
DOI:10.1038/s41598-024-66886-1
摘要

Abstract Transformers have achieved remarkable performance in multivariate time series(MTS) forecasting due to their capability to capture long-term dependencies. However, the canonical attention mechanism has two key limitations: (1) its quadratic time complexity limits the sequence length, and (2) it generates future values from the entire historical sequence. To address this, we propose a Dozer Attention mechanism consisting of three sparse components: (1) Local, each query exclusively attends to keys within a localized window of neighboring time steps. (2) Stride, enables each query to attend to keys at predefined intervals. (3) Vary, allows queries to selectively attend to keys from a subset of the historical sequence. Notably, the size of this subset dynamically expands as forecasting horizons extend. Those three components are designed to capture essential attributes of MTS data, including locality, seasonality, and global temporal dependencies. Additionally, we present the Dozerformer Framework, incorporating the Dozer Attention mechanism for the MTS forecasting task. We evaluated the proposed Dozerformer framework with recent state-of-the-art methods on nine benchmark datasets and confirmed its superior performance. The experimental results indicate that excluding a subset of historical time steps from the time series forecasting process does not compromise accuracy while significantly improving efficiency. Code is available at https://github.com/GRYGY1215/Dozerformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
亭2007完成签到 ,获得积分10
4秒前
杰尼龟发布了新的文献求助10
4秒前
Bethune124完成签到 ,获得积分10
4秒前
强健的问兰完成签到,获得积分20
5秒前
5秒前
7秒前
所所应助一只百味鸡采纳,获得30
7秒前
寒冷的迎梦完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
JC发布了新的文献求助10
10秒前
Manchester发布了新的文献求助10
16秒前
18秒前
Bulubulu完成签到,获得积分10
21秒前
Owen应助洁净的之玉采纳,获得10
21秒前
wzc发布了新的文献求助10
22秒前
酷波er应助机器猫采纳,获得30
22秒前
22秒前
内向芒果完成签到,获得积分20
23秒前
sisibiqi发布了新的文献求助10
23秒前
科研通AI2S应助多发文章采纳,获得10
26秒前
lijin发布了新的文献求助10
27秒前
一只百味鸡完成签到,获得积分10
27秒前
28秒前
30秒前
31秒前
32秒前
32秒前
36秒前
Bulubulu发布了新的文献求助10
37秒前
38秒前
38秒前
大力沛萍发布了新的文献求助10
38秒前
小全完成签到,获得积分10
39秒前
shy发布了新的文献求助10
40秒前
41秒前
完美世界应助zz采纳,获得10
42秒前
chenming发布了新的文献求助10
42秒前
43秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885647
求助须知:如何正确求助?哪些是违规求助? 3427724
关于积分的说明 10756569
捐赠科研通 3152654
什么是DOI,文献DOI怎么找? 1740448
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785254