The Online Shortest Path Problem: Learning Travel Times Using a Multiarmed Bandit Framework

最短路径问题 计算机科学 数学优化 路径(计算) 运筹学 图形 数学 理论计算机科学 程序设计语言
作者
Tomás Lagos,Ramón Auad,Felipe Lagos
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0196
摘要

In the age of e-commerce, logistics companies often operate within extensive road networks without accurate knowledge of travel times for their specific fleet of vehicles. Moreover, millions of dollars are spent on routing services that fail to accurately capture the unique characteristics of the drivers and vehicles of the companies. In this work, we address the challenge faced by a logistic operator with limited travel time information, aiming to find the optimal expected shortest path between origin-destination pairs. We model this problem as an online shortest path problem, common to many last-mile routing settings; given a graph whose arcs’ travel times are stochastic and follow an unknown distribution, the objective is to find a vehicle route of minimum travel time from an origin to a destination. The planner progressively collects travel condition data as drivers complete their routes. Inspired by the combinatorial multiarmed bandit and kriging literature, we propose three methods with distinct features to effectively learn the optimal shortest path, highlighting the practical advantages of incorporating spatial correlation in the learning process. Our approach balances exploration (improving estimates for unexplored arcs) and exploitation (executing the minimum expected time path) using the Thompson sampling algorithm. In each iteration, our algorithm executes the path that minimizes the expected travel time based on data from a posterior distribution of the speeds of the arcs. We conduct a computational study comprising two settings: a set of four artificial instances and a real-life case study. The case study uses empirical data of taxis in the 17-km-radius area of the center of Beijing, encompassing Beijing’s “5th Ring Road.” In both settings, our algorithms demonstrate efficient and effective balancing of the exploration-exploitation trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
shiizii应助遇见采纳,获得10
2秒前
2秒前
周周发布了新的文献求助10
5秒前
6秒前
汉堡包应助66666采纳,获得10
6秒前
6秒前
鹿无血发布了新的文献求助10
6秒前
畜牧笑笑完成签到,获得积分10
6秒前
Koi完成签到,获得积分10
6秒前
科研通AI5应助wangyu采纳,获得10
7秒前
现代期待发布了新的文献求助20
7秒前
音悦台发布了新的文献求助10
8秒前
8秒前
段盈完成签到,获得积分10
9秒前
eureka完成签到 ,获得积分10
9秒前
10秒前
星月夜完成签到,获得积分10
10秒前
10秒前
10秒前
Hello应助读书的时候采纳,获得10
10秒前
斯文败类应助111采纳,获得10
11秒前
ANJING完成签到,获得积分10
11秒前
11秒前
搜集达人应助难过千易采纳,获得10
13秒前
现代期待完成签到,获得积分10
14秒前
ZLM完成签到,获得积分10
15秒前
王硕发布了新的文献求助30
16秒前
田様应助平平平平采纳,获得30
16秒前
周周完成签到,获得积分10
16秒前
虚幻梦寒发布了新的文献求助10
17秒前
18秒前
19秒前
劣根发布了新的文献求助30
20秒前
情怀应助lily采纳,获得10
20秒前
21秒前
21秒前
慧1111111应助qsh采纳,获得10
21秒前
英姑应助隐形的傲易采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024682
求助须知:如何正确求助?哪些是违规求助? 3564474
关于积分的说明 11345846
捐赠科研通 3295685
什么是DOI,文献DOI怎么找? 1815301
邀请新用户注册赠送积分活动 889846
科研通“疑难数据库(出版商)”最低求助积分说明 813171