Position query-guided cross-modal flow field prediction model of a transonic compressor cascade

物理 级联 跨音速 机械 职位(财务) 气体压缩机 航空航天工程 流量(数学) 计算流体力学 空气动力学 热力学 化学 财务 色谱法 工程类 经济
作者
Liyue Wang,Haochen Zhang,Xinyue Lan,Cong Wang,Sheng Qin,Gang Sun,Jinzhang Feng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10)
标识
DOI:10.1063/5.0229921
摘要

The gradient of flow parameters in a transonic compressor cascade flow field varies significantly, especially in the region of shock waves, which causes a significant challenge to its high-precision flow field prediction. In this study, the position query-guided cross-modal flow field prediction model (PGCM) is proposed to effectively predict the flow field parameter distribution of a transonic compressor cascade. The PGCM utilizes the self-attention mechanism for the global and deep geometric feature extraction of configurations, which contributes to an in-depth understanding of the spatial relationships between coordinate points within the flow field, accurately capturing and analyzing the structural complexity of a compressor cascade flow. In addition, the PGCM integrates the cross-attention mechanism that establishes correlations between different input sequences, which enhances the performance of the model in querying and interpreting flow parameters at specific coordinates. The flow field prediction models are developed to predict the flow parameter distributions of different cascade geometries at Mach numbers of 0.78 and 0.93, respectively. The validation results indicate that the PGCM performs significantly better than the existing convolutional neural network and vision transformer, especially in the prediction of the pressure coefficient Cp distribution. The PGCM is adaptable to the variation of flow conditions and geometrical configurations efficiently and accurate in predicting the flow field of a compressor cascade. This paper demonstrates the promising potential of conducting the multi-modal information fusion to enhance the capability of flow field prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
江江好完成签到,获得积分10
1秒前
1秒前
子铭发布了新的文献求助10
2秒前
霰弹枪发布了新的文献求助10
3秒前
3秒前
lcj1014发布了新的文献求助10
3秒前
4秒前
4秒前
江江好发布了新的文献求助10
4秒前
范医生01完成签到,获得积分10
5秒前
许孤风发布了新的文献求助10
5秒前
6秒前
Chloe发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
隐形曼青应助柔弱亦寒采纳,获得10
9秒前
啦啦啦啦完成签到,获得积分10
9秒前
学术渣渣发布了新的文献求助10
10秒前
爆米花应助魁梧的曼凡采纳,获得10
10秒前
霰弹枪完成签到,获得积分10
11秒前
Heyna完成签到,获得积分10
12秒前
冷静的服饰完成签到,获得积分20
12秒前
13秒前
hd完成签到,获得积分10
13秒前
爱笑靖完成签到,获得积分10
14秒前
123araf完成签到,获得积分10
14秒前
15秒前
Future发布了新的文献求助10
15秒前
科研通AI6应助chsdpolos采纳,获得10
15秒前
16秒前
16秒前
stacy发布了新的文献求助10
17秒前
科目三应助顺心的芝麻采纳,获得10
17秒前
18秒前
Mycee发布了新的文献求助50
18秒前
科研通AI6应助汪文卿采纳,获得10
19秒前
西瓜666发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285092
求助须知:如何正确求助?哪些是违规求助? 3812537
关于积分的说明 11942455
捐赠科研通 3458948
什么是DOI,文献DOI怎么找? 1897089
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849400