Visco-hyperelastic material model fitting to experimental stress–strain curves using a genetic algorithm and its application to soft tissue simulants

超弹性材料 粘弹性 本构方程 材料科学 参数统计 遗传算法 算法 有限元法 计算机科学 生物系统 应用数学 数学 数学优化 结构工程 复合材料 工程类 生物 统计
作者
Samuel Gómez-Garraza,Raúl de Santos,Diego Infante‐García,Miguel Marco
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-67603-8
摘要

Ballistic impacts on human thorax without penetration can produce severe injuries or even death of the carrier. Soft tissue finite element models must capture the non-linear elasticity and strain-rate dependence to accurately estimate the dynamic human mechanical response. The objective of this work is the calibration of a visco-hyperelastic model for soft tissue simulants. Material model parameters have been calculated by fitting experimental stress–strain relations obtained from the literature using genetic algorithms. Several parametric analyses have been carried out during the definition of the optimization algorithm. In this way, we were able to study different optimization strategies to improve the convergence and accuracy of the final result. Finally, the genetic algorithm has been applied to calibrate two different soft tissue simulants: ballistic gelatin and styrene–ethylene–butylene–styrene. The algorithm is able to calculate the constants for visco-hyperelastic constitutive equations with high accuracy. Regarding synthetic stress–strain curves, a short computational time has been shown when using the semi-free strategy, leading to high precision results in stress–strain curves. The algorithm developed in this work, whose code is included as supplementary material for the reader use, can be applied to calibrate visco-hyperelastic parameters from stress–strain relations under different strain rates. The semi-free relaxation time strategy has shown to obtain more accurate results and shorter convergence times than the other strategies studied. It has been also shown that the understanding of the constitutive models and the complexity of the stress–strain objective curves is crucial for the accuracy of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
南屋发布了新的文献求助10
3秒前
陈江河发布了新的文献求助10
3秒前
合适凝雁完成签到,获得积分10
5秒前
机智的阿振完成签到,获得积分10
5秒前
7秒前
科研通AI5应助lys采纳,获得10
8秒前
科研通AI5应助舒适路人采纳,获得10
8秒前
12秒前
上官若男应助两个轮采纳,获得10
13秒前
chen发布了新的文献求助10
15秒前
稗子酿的酒完成签到 ,获得积分10
16秒前
17秒前
惟依发布了新的文献求助10
19秒前
石头发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI5应助舒适路人采纳,获得10
21秒前
小蘑菇应助CHB只争朝夕采纳,获得10
22秒前
24秒前
万能图书馆应助terry采纳,获得10
25秒前
陈江河发布了新的文献求助10
25秒前
两个轮发布了新的文献求助10
25秒前
29秒前
1523完成签到 ,获得积分10
32秒前
王一发布了新的文献求助20
32秒前
applooc完成签到,获得积分10
33秒前
Lucas应助如沐春风采纳,获得10
33秒前
123完成签到,获得积分10
35秒前
踏实的雁玉完成签到,获得积分10
36秒前
项烙发布了新的文献求助10
36秒前
xxxxxx完成签到,获得积分10
38秒前
40秒前
syp0929完成签到,获得积分20
41秒前
41秒前
14完成签到,获得积分10
44秒前
lys发布了新的文献求助10
45秒前
梓沐发布了新的文献求助10
45秒前
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784187
求助须知:如何正确求助?哪些是违规求助? 3329320
关于积分的说明 10241363
捐赠科研通 3044768
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759288