亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-accuracy and lightweight weld surface defect detector based on graph convolution decoupling head

解耦(概率) 图形 主管(地质) 探测器 卷积(计算机科学) 计算机科学 焊接 材料科学 人工智能 物理 光学 复合材料 工程类 地质学 理论计算机科学 控制工程 地貌学 人工神经网络
作者
Guan-Qiang Wang,Ming-Song Chen,Y.C. Lin,Xianhua Tan,Chizhou Zhang,Kai Li,Bai-Hui Gao,Yuxin Kang,Weiwei Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:4
标识
DOI:10.1088/1361-6501/ad63c2
摘要

Abstract The essence of the difficulties for weld surface detection is that there is a lot of interference information during detection. This study aims to enhance the detection accuracy while keeping great deployment capabilities of a detection model for weld surface defects. To achieve this goal, an improved Yolo-GCH model is proposed based on the stable and fast Yolo-v5. The improvements primarily involve introducing a graph convolution network combined with a self-attention mechanism in the head part (i.e., GCH). This component focuses on improving the insufficient recognition capability of CNN for similar defects in complex environments. Furthermore, to address the presence of potentially ambiguous samples in complex welding environments, the label assignment strategy of simOTA is implemented to optimize the anchor frame. Additionally, a streamlined structure, aiming to improve model detection speed while minimizing performance impact, has been designed to enhance the applicability of the model. The results demonstrate that the cooperation of GCH and simOTA significantly improves the detection performance while maintaining the inference speed. These strategies lead to a 2.5% increase in mAP@0.5 and reduce the missing detection rates of weld and 8 types of defects by 32.9% and 84.1% respectively, surpassing other weld surface detection models. Furthermore, the impressive applicability of the model is verified across four scaled versions of Yolo-v5. Based on the proposed strategies, the FPS increases by more than 30 frames in the fast s and n versions of Yolo-v5. These results demonstrate the great potential of the model for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助研友_Fan采纳,获得10
31秒前
DYKNGIVDFY完成签到,获得积分10
1分钟前
山橘月发布了新的文献求助10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得30
1分钟前
hhh完成签到,获得积分10
2分钟前
2分钟前
Tiger完成签到,获得积分10
2分钟前
研友_Fan发布了新的文献求助10
2分钟前
DYKNGIVDFY发布了新的文献求助10
2分钟前
George发布了新的文献求助10
3分钟前
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
3分钟前
xun完成签到,获得积分10
4分钟前
Linda发布了新的文献求助30
4分钟前
整齐的蜻蜓完成签到 ,获得积分10
4分钟前
5分钟前
Linda完成签到,获得积分10
5分钟前
科研通AI5应助菁菁采纳,获得30
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
Owllight发布了新的文献求助10
6分钟前
6分钟前
研友_Fan完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
菁菁发布了新的文献求助30
7分钟前
7分钟前
jeff完成签到,获得积分20
7分钟前
无花果应助科研通管家采纳,获得10
7分钟前
打打应助科研通管家采纳,获得10
7分钟前
菁菁完成签到,获得积分10
8分钟前
John完成签到,获得积分10
8分钟前
thangxtz完成签到,获得积分10
9分钟前
9分钟前
山橘月发布了新的文献求助10
9分钟前
紫熊完成签到,获得积分10
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784797
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244208
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508