Deployment of an Artificial Intelligence Histology Tool to Aid Qualitative Assessment of Histopathology Using the Nancy Histopathology Index in Ulcerative Colitis

组织病理学 溃疡性结肠炎 人工智能 医学 组织学 混乱 相关性 病理 机器学习 胃肠病学 计算机科学 数学 疾病 心理学 几何学 精神分析
作者
David T. Rubin,Olga Kubassova,Christopher R. Weber,Shashi Adsul,Marcelo Freire,Luc Biedermann,Viktor H. Koelzer,Brian Bressler,Wei Xiong,Jan Hendrik Niess,Matthias S. Matter,Uri Kopylov,Iris Barshack,Chen Mayer,Fernando Magro,Fátima Carneiro,Nitsan Maharshak,Ariel Greenberg,Simon P. Hart,Jamshid Dehmeshki
出处
期刊:Inflammatory Bowel Diseases [Oxford University Press]
被引量:3
标识
DOI:10.1093/ibd/izae204
摘要

Abstract Background Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by increased stool frequency, rectal bleeding, and urgency. To streamline the quantitative assessment of histopathology using the Nancy Index in UC patients, we developed a novel artificial intelligence (AI) tool based on deep learning and tested it in a proof-of-concept trial. In this study, we report the performance of a modified version of the AI tool. Methods Nine sites from 6 countries were included. Patients were aged ≥18 years and had UC. Slides were prepared with hematoxylin and eosin staining. A total of 791 images were divided into 2 groups: 630 for training the tool and 161 for testing vs expert histopathologist assessment. The refined AI histology tool utilized a 4-neural network structure to characterize images into a series of cell and tissue type combinations and locations, and then 1 classifier module assigned a Nancy Index score. Results In comparison with the proof-of-concept tool, each feature demonstrated an improvement in accuracy. Confusion matrix analysis demonstrated an 80% correlation between predicted and true labels for Nancy scores of 0 or 4; a 96% correlation for a true score of 0 being predicted as 0 or 1; and a 100% correlation for a true score of 2 being predicted as 2 or 3. The Nancy metric (which evaluated Nancy Index prediction) was 74.9% compared with 72.3% for the proof-of-concept model. Conclusions We have developed a modified AI histology tool in UC that correlates highly with histopathologists’ assessments and suggests promising potential for its clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小元采纳,获得10
刚刚
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
张先生发布了新的文献求助10
5秒前
科研应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
细心可乐完成签到 ,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
7秒前
8秒前
如风发布了新的文献求助10
9秒前
小常发布了新的文献求助10
12秒前
13秒前
可爱的万万亿完成签到,获得积分10
15秒前
26秒前
IvyLee完成签到,获得积分10
28秒前
29秒前
酷波er应助青衫采纳,获得10
29秒前
小常完成签到,获得积分10
32秒前
surge发布了新的文献求助10
34秒前
wyh3218完成签到 ,获得积分10
37秒前
骆欣怡完成签到 ,获得积分10
39秒前
Cumin完成签到 ,获得积分10
40秒前
46秒前
surge完成签到,获得积分10
46秒前
奔波霸完成签到,获得积分10
47秒前
风趣钻石完成签到,获得积分20
48秒前
大个应助哼哼哈嘿采纳,获得10
52秒前
56秒前
yue发布了新的文献求助10
1分钟前
1分钟前
风趣钻石发布了新的文献求助10
1分钟前
he完成签到 ,获得积分10
1分钟前
哼哼哈嘿发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385