纳米棒
纳米复合材料
食品科学
淀粉
化学
化学工程
纳米技术
材料科学
工程类
作者
Pengpeng Wang,Haiping Qin,Danfeng He,Zhiming Zou,Lin Xu,Qun Tang
标识
DOI:10.1016/j.ijbiomac.2024.134376
摘要
Smart packaging material capable of real-time monitoring of food freshness is essential for ensuring food safe. At present, colorimetric ammonia-sensing smart film often possesses issues with complicated production, high cost, and inferior long-term colour stability. Herein, Zinc‑copper bimetallic organic framework (ZnCu-BTC, BTC = 1,3,5-benzenetricarboxylate acid) nanorods with colorimetric ammonia-responsiveness were synthesized by adopting facile aqueous solution method, which were then explored as nano inclusions in potato starch/polyvinyl alcohol (PS/PVA) composite film towards developing high-performance smart packaging material. The results demonstrated that the introduction of ZnCu-BTC nanorods within PS/PVA brought about remarkable improvement in blend compatibility, accompanied by a boost in tensile strength to 47.2 MPa, as well as enhanced ultraviolet (UV) blocking efficacy (over 95.0 %). Additionally, the barrier properties of PS/PVA film against water vapor and oxygen were fortified due to the addition of ZnCu-BTC. More importantly, the developed PS/PVA/ZnCu-BTC nanocomposite film displayed satisfactory antibacterial activity (over 99 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), favorable colorimetric ammonia-sensing ability, and long-term colour stability. The ZnCu-BTC incorporated PS/PVA nanocomposite film could grant real-time detection of prawn freshness decline via remarkable colour change, indicating vast promise for smart food packaging applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI