Transformer-Based Spatio-Temporal Analysis for Classification of Aortic Stenosis Severity From Echocardiography Cine Series

狭窄 人工智能 计算机科学 主动脉瓣 放射科 内科学 医学 心脏病学 模式识别(心理学)
作者
Naser Ahmadi,Michael Tsang,Ang Nan Gu,Teresa S.M. Tsang,Purang Abolmaesumi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 366-376 被引量:4
标识
DOI:10.1109/tmi.2023.3305384
摘要

Aortic stenosis (AS) is characterized by restricted motion and calcification of the aortic valve and is the deadliest valvular cardiac disease. Assessment of AS severity is typically done by expert cardiologists using Doppler measurements of valvular flow from echocardiography. However, this limits the assessment of AS to hospitals staffed with experts to provide comprehensive echocardiography service. As accurate Doppler acquisition requires significant clinical training, in this paper, we present a deep learning framework to determine the feasibility of AS detection and severity classification based only on two-dimensional echocardiographic data. We demonstrate that our proposed spatio-temporal architecture effectively and efficiently combines both anatomical features and motion of the aortic valve for AS severity classification. Our model can process cardiac echo cine series of varying length and can identify, without explicit supervision, the frames that are most informative towards the AS diagnosis. We present an empirical study on how the model learns phases of the heart cycle without any supervision and frame-level annotations. Our architecture outperforms state-of-the-art results on a private and a public dataset, achieving 95.2% and 91.5% in AS detection, and 78.1% and 83.8% in AS severity classification on the private and public datasets, respectively. Notably, due to the lack of a large public video dataset for AS, we made slight adjustments to our architecture for the public dataset. Furthermore, our method addresses common problems in training deep networks with clinical ultrasound data, such as a low signal-to-noise ratio and frequently uninformative frames. Our source code is available at: https://github.com/neda77aa/FTC.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助如意的书南采纳,获得10
2秒前
4秒前
4秒前
CYY发布了新的文献求助10
8秒前
9秒前
10秒前
yue发布了新的文献求助10
14秒前
14秒前
15秒前
cccc发布了新的文献求助10
17秒前
17秒前
chengche完成签到,获得积分10
19秒前
烟花应助我不是阿呆采纳,获得10
19秒前
chen测发布了新的文献求助10
20秒前
Xdz完成签到 ,获得积分10
20秒前
cccc完成签到,获得积分10
22秒前
Haibrar完成签到 ,获得积分10
25秒前
27秒前
科研通AI5应助chengche采纳,获得10
28秒前
甜蜜唯雪完成签到,获得积分10
30秒前
31秒前
pluto应助雨水采纳,获得10
34秒前
倪好完成签到,获得积分10
35秒前
科目三应助甜蜜唯雪采纳,获得10
37秒前
yue完成签到,获得积分10
41秒前
WSGQT完成签到 ,获得积分10
42秒前
47秒前
48秒前
香蕉觅云应助郁金香采纳,获得10
49秒前
温暖涫完成签到 ,获得积分10
51秒前
yorkin完成签到 ,获得积分10
51秒前
叶映安发布了新的文献求助10
52秒前
53秒前
土土驳回了英姑应助
53秒前
54秒前
58秒前
科目三应助fishhh采纳,获得10
58秒前
58秒前
无花果应助Jasper采纳,获得10
1分钟前
pluto应助如意的书南采纳,获得30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385