Assessment and risk prediction of frailty using texture-based muscle ultrasound image analysis and machine learning techniques

逻辑回归 接收机工作特性 医学 逐步回归 超声波 共病 曲线下面积 人工智能 物理医学与康复 内科学 放射科 计算机科学
作者
Rebeca Mirón-Mombiela,Silvia Ruiz‐España,David Moratal,Consuelo Borrás
出处
期刊:Mechanisms of Ageing and Development [Elsevier BV]
卷期号:215: 111860-111860 被引量:5
标识
DOI:10.1016/j.mad.2023.111860
摘要

The purpose of this study was to evaluate texture-based muscle ultrasound image analysis for the assessment and risk prediction of frailty phenotype. This retrospective study of prospectively acquired data included 101 participants who underwent ultrasound scanning of the anterior thigh. Participants were subdivided according to frailty phenotype and were followed up for two years. Primary and secondary outcome measures were death and comorbidity, respectively. Forty-three texture features were computed from the rectus femoris and the vastus intermedius muscles using statistical methods. Model performance was evaluated by computing the area under the receiver operating characteristic curve (AUC) while outcome prediction was evaluated using regression analysis. Models developed achieved a moderate to good AUC (0.67 ≤ AUC ≤ 0.79) for categorizing frailty. The stepwise multiple logistic regression analysis demonstrated that they correctly classified 70 to 87% of the cases. The models were associated with increased comorbidity (0.01 ≤ p ≤ 0.18) and were predictive of death for pre-frail and frail participants (0.001 ≤ p ≤ 0.016). In conclusion, texture analysis can be useful to identify frailty and assess risk prediction (i.e. mortality) using texture features extracted from muscle ultrasound images in combination with a machine learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助jxx采纳,获得10
1秒前
2秒前
神勇的若灵完成签到,获得积分10
2秒前
527完成签到,获得积分10
4秒前
YY发布了新的文献求助10
4秒前
5秒前
7秒前
安安发布了新的文献求助10
9秒前
Vicky完成签到,获得积分10
9秒前
科研通AI5应助Bressanone采纳,获得10
10秒前
英姑应助YY采纳,获得10
11秒前
淡墨完成签到,获得积分10
11秒前
慕青应助zs采纳,获得10
14秒前
14秒前
星辰大海应助有魅力的井采纳,获得30
16秒前
酷波er应助安安采纳,获得10
17秒前
21秒前
Air云完成签到,获得积分10
23秒前
24秒前
小小完成签到,获得积分10
24秒前
25秒前
无足鸟完成签到,获得积分10
25秒前
26秒前
kwen完成签到 ,获得积分10
27秒前
racill发布了新的文献求助20
28秒前
29秒前
zs发布了新的文献求助10
30秒前
怡然冷安完成签到,获得积分10
32秒前
斯文败类应助萤火虫采纳,获得10
38秒前
无奈的豆沙包完成签到 ,获得积分10
39秒前
科研通AI2S应助qfby采纳,获得10
42秒前
SeliqAq完成签到,获得积分10
42秒前
邓德亨卓汲完成签到,获得积分10
43秒前
He发布了新的文献求助10
44秒前
44秒前
zs完成签到,获得积分10
45秒前
今后应助wdb采纳,获得10
46秒前
研友_O8W2PZ发布了新的文献求助10
47秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808