Flooding-based MobileNet to identify cucumber diseases from leaf images in natural scenes

上传 规范化(社会学) 计算机科学 洪水(心理学) 人工智能 农业工程 工程类 社会学 人类学 心理治疗师 操作系统 心理学
作者
Y. Liu,Zhengle Wang,Ying Wang,Jiasi Chen,Hongju Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108166-108166 被引量:25
标识
DOI:10.1016/j.compag.2023.108166
摘要

Cucumber production in China is declining due to various pathologic diseases, but the technology for plant disease detection is not mature and requires high labor costs. Moreover, since planting sites are typically high-density scenes, most photos are shot from various angles with messy backgrounds, resulting in poor classification reliability. In this paper, batches of cucumber leaf image data are collected from agricultural websites and then preprocessed through the image size normalization. A mobile-based recognition algorithm is proposed to identify cucumber diseases from leaf images in natural scenes, enabling farmers to detect diseases more quickly. The proposed algorithm allows farmers to upload cucumber pictures, and rapidly and accurately classify them with high accuracy. With a improved network based on MobileNet V3, the classification of seven kinds of cucumber leaf diseases can be quickly and accurately completed. The network model is achieved by selecting appropriate parameters, optimizers, and batch capacity using the single-variable method. Additionally, a new training strategy called the flooding method is applied in the model, replacing the traditional strategy that relies solely on loss decline. An accuracy of 83.3% is achieved on our custom dataset. Finally, two public datasets, namely PlantVillage and Apple Disease, are selected for migration experiments. The achieved accuracy rates for these datasets are 99% and 98.1% respectively, demonstrating the universality of the proposed strategy. The code for all the experiments will be made available for reference on the GitHub repository at https://github.com/YiQuanMarx/Agricultural_Diseases_Dentification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒萼完成签到,获得积分10
刚刚
刚刚
香蕉觅云应助果汁狸采纳,获得10
刚刚
天天快乐应助Bond采纳,获得10
刚刚
张薇发布了新的文献求助10
1秒前
2秒前
君莫笑发布了新的文献求助10
2秒前
3秒前
violetlishu完成签到 ,获得积分10
3秒前
海聪天宇完成签到,获得积分10
4秒前
博修发布了新的文献求助200
4秒前
4秒前
hezi完成签到,获得积分10
4秒前
执着惜梦发布了新的文献求助10
7秒前
cc完成签到,获得积分10
7秒前
7秒前
xinyue完成签到 ,获得积分10
8秒前
木野狐发布了新的文献求助10
8秒前
碳土不凡完成签到 ,获得积分10
8秒前
13333完成签到,获得积分10
10秒前
10秒前
111完成签到,获得积分10
11秒前
Qvby3发布了新的文献求助30
13秒前
14秒前
苹果蛋完成签到,获得积分10
14秒前
INSAT完成签到,获得积分10
15秒前
15秒前
15秒前
迷人飞柏完成签到,获得积分20
16秒前
semigreen发布了新的文献求助10
17秒前
lh完成签到,获得积分10
17秒前
17秒前
若邻完成签到,获得积分10
17秒前
知意完成签到,获得积分10
18秒前
经法发布了新的文献求助10
19秒前
19秒前
yilin完成签到 ,获得积分10
19秒前
zuo发布了新的文献求助10
20秒前
Hammerdai完成签到,获得积分10
20秒前
gaoqingsong完成签到,获得积分20
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798842
求助须知:如何正确求助?哪些是违规求助? 3344585
关于积分的说明 10320753
捐赠科研通 3061034
什么是DOI,文献DOI怎么找? 1679982
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386