Visual interpretation of deep deterministic policy gradient models for energy consumption prediction

强化学习 计算机科学 人工智能 降维 能源消耗 机器学习 维数之咒 过程(计算) 集合(抽象数据类型) 预测建模 数据挖掘 工程类 操作系统 电气工程 程序设计语言
作者
Huixue Wang,Yunzhe Wang,Long You,Qiming Fu,Jianping Chen
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:79: 107847-107847
标识
DOI:10.1016/j.jobe.2023.107847
摘要

Accurate prediction of energy consumption is pivotal to achieving sustainable building energy objectives, and Deep Reinforcement Learning (DRL) has demonstrated efficacy in this regard. Nevertheless, efficient model training within DRL remains challenging for practitioners due to the need for expertise in Reinforcement Learning (RL) and parameter tuning. Moreover, the invisible mechanism of DRL models raises doubts among users, impeding subsequent tasks. To address these challenges, a visual analytics system named DDPGVis is proposed in this work, which focuses on exploring the experience data generated by Deep Deterministic Policy Gradient (DDPG) models used for energy consumption prediction. Specifically, temporal aggregation of steps is employed to heighten the efficiency of subsequent analysis. Feature importance analysis and dimensionality reduction of state data are utilized to help users understand the high-dimensional environment space. Simultaneously, experience data is subjected to spatio-temporal modeling, yielding dynamic network diagrams, which are utilized to analyze the experience correlations. Except for showcasing the statistics and results from the analysis of state and experience data, DDPGVis also provides a recommendation view for assisting users in parameter tuning. In corporation with three non-reinforcement learning experts, case studies demonstrate that DDPGVis can help users understand the model training process, diagnose model anomalies, and optimize the model efficiency. Compared to the parameters initially set by the same expert for energy consumption prediction, DDPGVis can recommend a better configuration that contributes to a reduction of MAE, MAPE, and RMSE by 41%, 55.62%, and 28.03%, respectively, and an increase of R2 by 7.42%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyd发布了新的文献求助10
刚刚
2秒前
番茄发布了新的文献求助20
2秒前
3秒前
5秒前
自然方盒发布了新的文献求助10
6秒前
三十四画生完成签到 ,获得积分10
6秒前
耗尽完成签到,获得积分10
8秒前
以戈完成签到,获得积分10
8秒前
cy发布了新的文献求助30
8秒前
leah完成签到 ,获得积分10
8秒前
9秒前
追梦小帅发布了新的文献求助10
10秒前
Akim应助SCL987654321采纳,获得10
12秒前
魏白晴完成签到,获得积分10
13秒前
Haibrar完成签到 ,获得积分10
14秒前
14秒前
IMP完成签到 ,获得积分10
15秒前
吴泽旭发布了新的文献求助10
16秒前
最初的远方完成签到,获得积分10
17秒前
orixero应助rune采纳,获得10
17秒前
zxm完成签到,获得积分10
18秒前
xiaopan9083发布了新的文献求助10
20秒前
赘婿应助猪猪hero采纳,获得10
22秒前
自然方盒完成签到,获得积分10
25秒前
25秒前
RiRi完成签到,获得积分10
26秒前
sunrise_99完成签到,获得积分10
26秒前
俊鱼完成签到,获得积分10
27秒前
翻译度完成签到,获得积分10
29秒前
31秒前
Castiron完成签到 ,获得积分10
31秒前
TT2022发布了新的文献求助10
32秒前
34秒前
52pry发布了新的文献求助10
36秒前
怡然绿兰完成签到,获得积分10
37秒前
utgu完成签到,获得积分10
37秒前
科研通AI5应助cy采纳,获得10
37秒前
HY完成签到 ,获得积分10
39秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751