EGNN: Energy-efficient anomaly detection for IoT multivariate time series data using graph neural network

异常检测 计算机科学 数据挖掘 多元统计 时间序列 图形 异常(物理) 人工神经网络 人工智能 机器学习 理论计算机科学 凝聚态物理 物理
作者
Hongtai Guo,Zhangbing Zhou,Deng Zhao,Walid Gaaloul
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:151: 45-56 被引量:12
标识
DOI:10.1016/j.future.2023.09.028
摘要

Anomaly detection has been widely applied in Internet of Things (IoT) to guarantee the health of IoT applications. Current studies on anomaly detection focus mainly on measurement design and discovery methods on the cloud, which, however, are associated with issues of computational heaviness and capacity limitation when applied at the network edge. Thus, it becomes important to ensure that the detection is not only accurate but also energy-efficient. To fill this gap, this paper proposes an accurate and Energy-efficient Graph Neural Network based anomaly detection method (EGNN) for IoT multivariate time series data. Specifically, correlations between sensory data upon different IoT devices, which are rarely considered in the literature, are explored through a developed Subgraph Generation Algorithm (SGA) based on graph structure learning. As a result, a dependency graph with multiple subgraphs and their corresponding centers is generated. Thereafter, to reduce anomaly-irrelevant sensory data transmitted in the network, only sensory data upon subgraph centers are utilized for anomaly detection by a computational-light approach, i.e., a multi-layer perceptron based forecasting method. Once an anomaly is detected, sensory data of whole subgraph data are adopted for obtaining accurate anomaly results, by a graph attention based forecasting method. This GNN-based anomaly detection strategy with Mode Switching (GMS) can greatly reduce anomaly-irrelevant data transmission, especially when anomalies occur infrequently. To validate the effectiveness of our mechanism, extensive experiments are conducted upon real-world IoT multivariate time series datasets, and comparison results demonstrate that our technique outperforms the state-of-the-art counterparts in terms of accuracy and energy-efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
keyan123应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
咕咕发布了新的文献求助10
2秒前
bear发布了新的文献求助10
2秒前
2秒前
LiushengCUI完成签到,获得积分10
3秒前
小怪兽发布了新的文献求助20
4秒前
toxin37完成签到 ,获得积分10
4秒前
一只大老蹬完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
快乐的忆山完成签到,获得积分10
7秒前
海猫食堂完成签到,获得积分10
7秒前
kento完成签到,获得积分0
8秒前
8秒前
山吱小猪完成签到,获得积分10
8秒前
8秒前
专注的语堂完成签到,获得积分10
8秒前
翼静发布了新的文献求助30
8秒前
9秒前
9秒前
坦率沛蓝发布了新的文献求助30
9秒前
xiaoyao完成签到,获得积分10
9秒前
kinwi发布了新的文献求助10
9秒前
9秒前
李爱国应助Innogen采纳,获得10
10秒前
Rondab应助依小米采纳,获得10
10秒前
11秒前
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049865
求助须知:如何正确求助?哪些是违规求助? 3587736
关于积分的说明 11400813
捐赠科研通 3314203
什么是DOI,文献DOI怎么找? 1823161
邀请新用户注册赠送积分活动 895103
科研通“疑难数据库(出版商)”最低求助积分说明 816692