超导电性
物理
凝聚态物理
电子
动量(技术分析)
磁场
劈形算符
量子力学
欧米茄
财务
经济
作者
M. Yu. Levichev,I. Yu. Pashen’kin,N. S. Gusev,D. Yu. Vodolazov
出处
期刊:Physical review
[American Physical Society]
日期:2023-09-26
卷期号:108 (9)
被引量:11
标识
DOI:10.1103/physrevb.108.094517
摘要
Normally, in superconductors, as in conductors, in a state with zero current $I$ the momentum of superconducting electrons $\ensuremath{\hbar}q=0$. Here we demonstrate theoretically and present experimental evidence that in a superconducting/normal metal (SN) hybrid strip placed in an in-plane magnetic field ${B}_{\mathrm{in}}$ a finite momentum state ($\ensuremath{\hbar}q\ensuremath{\ne}0$) is realized when $I=0$. This state is characterized by current-momentum dependence $I(q)\ensuremath{\ne}\ensuremath{-}I(\ensuremath{-}q)$, nonreciprocal kinetic inductance ${L}_{k}(I)\ensuremath{\ne}{L}_{k}(\ensuremath{-}I)$, and different values of depairing currents ${I}_{\mathrm{dep}}^{\ifmmode\pm\else\textpm\fi{}}$ flowing along the SN strip in opposite directions. The properties found have orbital nature and originate from the density gradient of superconducting electrons $\ensuremath{\nabla}n$ across the thickness of the SN strip and field-induced Meissner currents. We argue that this type of finite momentum state should be a rather general phenomenon in superconducting structures with artificial or intrinsic inhomogeneities.
科研通智能强力驱动
Strongly Powered by AbleSci AI