Hybrid IoT Device Selection With Knowledge Transfer for Federated Learning

计算机科学 分布式计算 架空(工程) 学习迁移 催交 资源(消歧) 共享资源 资源管理(计算) 最优化问题 人工智能 计算机网络 算法 系统工程 工程类 操作系统
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12216-12227 被引量:8
标识
DOI:10.1109/jiot.2023.3334018
摘要

Federated learning (FL) enables collaborative model training across massively distributed edge devices, such as Internet of Things (IoT) nodes. However, resource constraints impose a major challenge, as there exists a trade-off between maximizing learning accuracy and minimizing communication overhead between the resource-limited devices. In this paper, we present a device selection approach for heterogeneous FL systems based on multi-objective optimization and knowledge transfer. We formulate the resource constraint in federated optimization as a multi-objective problem, and obtain Pareto-optimal solutions balancing resource efficiency and test accuracy. Additionally, we introduce an innovative knowledge transfer mechanism that propagates the globally optimal models obtained during multi-objective optimization to subsequent FL tasks, further expediting convergence. The multi-objective formulation and knowledge transfer provide new insights into efficient and robust federated learning for resource-constrained IoT applications. We conduct extensive experiments on real-world datasets. Results demonstrate that our method achieves up to 11% higher accuracy than state-of-the-art methods, while effectively mitigating resource constraints. Impact Statement–Federated learning is an efficient algorithm that enables everything to be interconnected without sharing data. However, resource constraint is the main challenge for federated optimization problems. Although many works have proposed various solutions from different perspectives, these methods cannot simultaneously minimize the communication resource cost while ensuring algorithm performance. We propose an automatic device selection algorithm for federated systems based on multi-objective optimization and knowledge transfer. This work not only reduces the global resource usage rate of federated learning, but also enables it to converge quickly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
64658应助科研通管家采纳,获得10
刚刚
张雷应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
pcr163应助科研通管家采纳,获得50
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
IvanMcRae应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助tt采纳,获得10
2秒前
3秒前
隐形曼青应助汤壳西姆采纳,获得10
3秒前
4秒前
wen发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
Zack完成签到,获得积分10
7秒前
隐形曼青应助意满离采纳,获得10
8秒前
11秒前
薯饼发布了新的文献求助10
11秒前
lhy完成签到,获得积分10
12秒前
DADADADAD完成签到,获得积分10
12秒前
年轻真好啊应助ouiiiblue采纳,获得10
12秒前
冰牛奶发布了新的文献求助10
12秒前
zhaoli完成签到 ,获得积分10
13秒前
Boniu_wang完成签到,获得积分10
14秒前
wen完成签到,获得积分10
14秒前
请你吃折耳根完成签到,获得积分10
15秒前
科研通AI2S应助的速度采纳,获得10
15秒前
wyy完成签到,获得积分20
15秒前
所所应助光亮翠风采纳,获得10
16秒前
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963885
求助须知:如何正确求助?哪些是违规求助? 3509763
关于积分的说明 11148800
捐赠科研通 3243585
什么是DOI,文献DOI怎么找? 1792138
邀请新用户注册赠送积分活动 873547
科研通“疑难数据库(出版商)”最低求助积分说明 803808