Physics-informed deep learning for traffic state estimation based on the traffic flow model and computational graph method

计算机科学 图形 过程(计算) 深度学习 数据挖掘 流量(计算机网络) 数据收集 人工智能 算法 机器学习 理论计算机科学 数学 统计 计算机安全 操作系统
作者
Jinlei Zhang,Shuai Mao,Lixing Yang,Wei Ma,Shukai Li,Ziyou Gao
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101971-101971 被引量:49
标识
DOI:10.1016/j.inffus.2023.101971
摘要

Traffic state estimation (TSE) is a critical task for intelligent transportation systems. However, it is extremely challenging because the traffic data quality is often affected by the installation position of devices, data collection frequency, interference during the transmission process, etc, thus causing the problem of data sparsity or data missing. To address the issue of traffic state estimation under the scenario of data sparsity, we propose a TSE model that combines the computational graph with physics-informed deep learning (PIDL) methods. Firstly, we apply the computational graph method to determine the parameters of the traffic fundamental diagram. These parameters are embedded into the computational graph framework, and their values are determined through the forward propagation of variables and the backward propagation of errors. Next, we employ the PIDL method to realize TSE (taking the LWR model based on the Greenshields fundamental diagram as an example). The PIDL leverages the advantages of data-driven and model-driven approaches to achieve accurate traffic state estimation. Case studies are conducted using the NGSIM dataset under two sparse data scenarios: loop detectors and probe vehicles. Experimental results demonstrate that PIDL can accurately reconstruct the traffic state of the entire road segment based on partially observed data. Furthermore, compared to pure deep learning methods and other baseline models, PIDL performs better in situations with sparse data, thereby proving the feasibility of integrating domain knowledge with deep learning frameworks. This paper fully acknowledges the issue of data sparsity in TSE and effectively addresses it by applying the PIDL method to achieve precise TSE, which holds significant implications for the control and management of real traffic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静灵阳发布了新的文献求助10
刚刚
1秒前
4秒前
道天发布了新的文献求助10
4秒前
KEHUGE完成签到,获得积分10
5秒前
5秒前
羞涩的傲菡给羞涩的傲菡的求助进行了留言
6秒前
For关闭了For文献求助
7秒前
落寞元霜完成签到,获得积分10
7秒前
爆米花应助yimoyafan采纳,获得10
7秒前
FashionBoy应助zhovy采纳,获得10
8秒前
9秒前
9秒前
fhbsdufh发布了新的文献求助10
9秒前
贪玩钢铁侠完成签到,获得积分10
11秒前
11秒前
郭de钢发布了新的文献求助10
11秒前
wqs发布了新的文献求助10
12秒前
苦小厄发布了新的文献求助10
15秒前
苏澄完成签到,获得积分10
15秒前
Kriemhild完成签到,获得积分10
15秒前
15秒前
卷网那个完成签到,获得积分10
17秒前
Hello应助刘晓蕾采纳,获得10
17秒前
Lees发布了新的文献求助100
18秒前
悠悠完成签到,获得积分10
18秒前
过时的小萱关注了科研通微信公众号
19秒前
nandeyijia完成签到,获得积分10
20秒前
香蕉觅云应助加百莉采纳,获得10
21秒前
深情安青应助朴素尔蝶采纳,获得10
22秒前
shubo完成签到,获得积分10
22秒前
23秒前
26秒前
务实的菓完成签到 ,获得积分10
26秒前
左手树发布了新的文献求助10
28秒前
28秒前
28秒前
30秒前
31秒前
NexusExplorer应助wqs采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452409
求助须知:如何正确求助?哪些是违规求助? 3919451
关于积分的说明 12165101
捐赠科研通 3569602
什么是DOI,文献DOI怎么找? 1960317
邀请新用户注册赠送积分活动 999633
科研通“疑难数据库(出版商)”最低求助积分说明 894577