计算机科学
软件
高斯分布
缩放比例
计算科学
编码(集合论)
班级(哲学)
原子间势
接口(物质)
算法
从头算
理论计算机科学
统计物理学
并行计算
人工智能
分子动力学
物理
计算化学
程序设计语言
数学
化学
量子力学
几何学
集合(抽象数据类型)
气泡
最大气泡压力法
作者
Sascha Klawohn,James P. Darby,James R. Kermode,Gábor Cśanyi,A. Miguel,Albert P. Bartók
摘要
Gaussian Approximation Potentials (GAPs) are a class of Machine Learned Interatomic Potentials routinely used to model materials and molecular systems on the atomic scale. The software implementation provides the means for both fitting models using ab initio data and using the resulting potentials in atomic simulations. Details of the GAP theory, algorithms and software are presented, together with detailed usage examples to help new and existing users. We review some recent developments to the GAP framework, including Message Passing Interface parallelisation of the fitting code enabling its use on thousands of central processing unit cores and compression of descriptors to eliminate the poor scaling with the number of different chemical elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI