Deep learning-based autonomous real-time digital meter reading recognition method for natural scenes

人工智能 计算机科学 计算机视觉 推论 延迟(音频) 深度学习 阅读(过程) 模式识别(心理学) 电信 政治学 法学
作者
Jianqing Peng,Wei Zhou,Han Yu,Mengtang Li,Wanquan Liu
出处
期刊:Measurement [Elsevier BV]
卷期号:222: 113615-113615 被引量:4
标识
DOI:10.1016/j.measurement.2023.113615
摘要

Natural scenes with variable illumination, variable target scale and angular tilt pose significant challenges to the autonomous recognition of digital meter readings. Based on this, this paper proposes a deep learning-based autonomous real-time digital meter reading recognition method for natural scenes. First, the YOLO-style corner point detection method (YOLO-CPDM) for the reading area is proposed by reconstructing the detection heads and incorporating the corner detection loss function. Its localization accuracy is further refined by embedding attention mechanism module, implementing dynamic loss function and enhancing training data diversity through offline augmentation techniques like image rotation and flipping. Then, the detected corner points are used to geometrically correct the distorted reading area by perspective transformation to mitigate the interference caused by the shooting angle. Next, the YOLO-style end-to-end reading recognition method (YOLO-EERRM) is proposed to accurately extract the characters in the reading area. Finally, the validity of the YOLO-CPDM and YOLO-EERRM was verified on a produced dataset named SYSU-DM and 2 public datasets. Compared with the State of the arts (SOTA) keypoint detection model, the mean Average Precision @ 50:95 scores of the YOLO-CPDM improved by 2.8, 4.1, and 1.1 points, respectively, while the inference latency was only 5.3 ms, and YOLO-EERRM achieved 100 % accuracy and 3.1 ms inference latency on the SYSU-DM dataset. Statistically, the complete digital meter reading recognition method has 99.6 % accuracy and 8.6 ms inference latency, indicating that the system has high recognition accuracy and practicality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzhu完成签到,获得积分10
3秒前
伊人泪发布了新的文献求助10
4秒前
若水发布了新的文献求助200
5秒前
开朗青旋发布了新的文献求助30
6秒前
Pig-prodigy完成签到,获得积分10
12秒前
开朗青旋完成签到,获得积分10
15秒前
16秒前
夏下下完成签到 ,获得积分10
18秒前
BCS发布了新的文献求助30
18秒前
zhujun完成签到,获得积分10
19秒前
nekoneko完成签到,获得积分10
19秒前
陈淑玲完成签到,获得积分10
20秒前
hiten完成签到,获得积分10
21秒前
水聿完成签到,获得积分10
22秒前
上上签完成签到 ,获得积分10
23秒前
甜蜜的阳光完成签到 ,获得积分10
24秒前
zxd1999完成签到,获得积分10
36秒前
yang完成签到,获得积分10
37秒前
英姑应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
酷波er应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
在水一方应助科研通管家采纳,获得10
39秒前
39秒前
huapeng完成签到 ,获得积分10
41秒前
hutian完成签到,获得积分10
46秒前
碧蓝邪欢完成签到,获得积分10
46秒前
49秒前
打打应助糊涂的胡采纳,获得10
50秒前
51秒前
52秒前
若水完成签到 ,获得积分10
53秒前
科研通AI5应助huangzitong采纳,获得10
53秒前
zgnh完成签到,获得积分10
54秒前
1213完成签到 ,获得积分10
54秒前
可爱的函函应助水濑心源采纳,获得30
55秒前
奂锐123发布了新的文献求助10
56秒前
ding应助vivid采纳,获得10
59秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843