量子点
材料科学
钙钛矿(结构)
纳米技术
兴奋剂
流体学
光致发光
智能材料
光电子学
电气工程
化学工程
工程类
作者
Fazel Bateni,Sina Sadeghi,Negin Orouji,Jeffrey A. Bennett,Venkat S. Punati,Christine Stark,Junyu Wang,Michael C. Rosko,Ou Chen,Felix N. Castellano,Kristofer G. Reyes,Milad Abolhasani
标识
DOI:10.1002/aenm.202302303
摘要
Abstract Metal cation‐doped lead halide perovskite (LHP) quantum dots (QDs) with photoluminescence quantum yields (PLQYs) higher than unity, due to quantum cutting phenomena, are an important building block of the next‐generation renewable energy technologies. However, synthetic route exploration and development of the highest‐performing QDs for device applications remain challenging. In this work, Smart Dope is presented, which is a self‐driving fluidic lab (SDFL), for the accelerated synthesis space exploration and autonomous optimization of LHP QDs. Specifically, the multi‐cation doping of CsPbCl 3 QDs using a one‐pot high‐temperature synthesis chemistry is reported. Smart Dope continuously synthesizes multi‐cation‐doped CsPbCl 3 QDs using a high‐pressure gas‐liquid segmented flow format to enable continuous experimentation with minimal experimental noise at reaction temperatures up to 255°C. Smart Dope offers multiple functionalities, including accelerated mechanistic studies through digital twin QD synthesis modeling, closed‐loop autonomous optimization for accelerated QD synthetic route discovery, and on‐demand continuous manufacturing of high‐performing QDs. Through these developments, Smart Dope autonomously identifies the optimal synthetic route of Mn‐Yb co‐doped CsPbCl 3 QDs with a PLQY of 158%, which is the highest reported value for this class of QDs to date. Smart Dope illustrates the power of SDFLs in accelerating the discovery and development of emerging advanced energy materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI