碱金属
电解质
锂(药物)
无机化学
离子键合
离子
化学
酰亚胺
分子动力学
环氧乙烷
离子电导率
盐(化学)
离解(化学)
聚合物
材料科学
物理化学
高分子化学
计算化学
有机化学
医学
电极
共聚物
内分泌学
作者
Brigette Althea Fortuin,Jon Otegi,Juan Miguel López del Amo,Sergio Rodríguez Peña,Leire Meabe,Hegoi Manzano,Maria Martínez‐Ibáñez,Javier Carrasco
摘要
Model validation of a well-known class of solid polymer electrolyte (SPE) is utilized to predict the ionic structure and ion dynamics of alternative alkali metal ions, leading to advancements in Na-, K-, and Cs-based SPEs for solid-state alkali metal batteries. A comprehensive study based on molecular dynamics (MD) is conducted to simulate ion coordination and the ion transport properties of poly(ethylene oxide) (PEO) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt across various LiTFSI concentrations. Through validation of the MD simulation results with experimental techniques, we gain a deeper understanding of the ionic structure and dynamics in the PEO/LiTFSI system. This computational approach is then extended to predict ion coordination and transport properties of alternative alkali metal ions. The ionic structure in PEO/LiTFSI is significantly influenced by the LiTFSI concentration, resulting in different lithium-ion transport mechanisms for highly concentrated or diluted systems. Substituting lithium with sodium, potassium, and cesium reveals a weaker cation-PEO coordination for the larger cesium-ion. However, sodium-ion based SPEs exhibit the highest cation transport number, indicating the crucial interplay between salt dissociation and cation-PEO coordination for achieving optimal performance in alkali metal SPEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI