Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants

活性氧 生物 青枯菌 氧气 病菌 化学 生物化学 微生物学 有机化学
作者
Lei Wang,Taowen Pan,Xuhua Gao,Jing An,Chuanchuan Ning,Sicong Li,Kunzheng Cai
出处
期刊:NanoImpact [Elsevier BV]
卷期号:28: 100418-100418 被引量:30
标识
DOI:10.1016/j.impact.2022.100418
摘要

Silica nanoparticles (SNPs) play an important positive role in enhancing stress resistance of plants. However, their absorption and the mechanisms of resistance in plants are not yet fully understood. In this study, we investigated the uptake of SNPs in tomato plants and explored the physiological and molecular mechanisms of SNPs-mediated bacterial wilt resistance. Folia application of SNPs significantly increased silicon content in tomato leaves and roots by 5.4-fold and 1.8-fold compared with healthy control, respectively. Moreover, foliar-applied SNPs mainly accumulated in the shoots of plants. Interestingly, we found that SNPs significantly reduced wilt severity by 20.71%–87.97%. Under pathogen infection conditions, the Hydrogen peroxide (H2O2) levels and Malondialdehyde (MDA) content in SNPs treated leaves significantly decreased by 16.33%–24.84% and 22.15%–38.54%, respectively, compared to non-treated SNPs leaves. The application of SNPs remarkably increased peroxidase (78.56–157.47%), superoxide dismutase (46.02–51.68%), and catalase (1.59–1.64 fold) enzyme activities, as well as upregulated the expression of salicylic acid-related genes (PR-1, PR-5, and PAL) in tomato leaves. Taken together, our findings demonstrate that SNPs function as important nanoparticles to maintain ROS homeostasis in plants by increasing antioxidant enzyme activity in tomato plants and enhancing plant tolerance to bacterial wilt disease by regulating the expression of salicylic acid-related genes. This study expands our understanding of how plants utilize these nanoparticles to deal with pathogen infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssss发布了新的文献求助30
1秒前
夏沐沐发布了新的文献求助10
1秒前
Echo发布了新的文献求助10
3秒前
4秒前
我说我话完成签到,获得积分10
4秒前
8秒前
chunyeliangchuan完成签到,获得积分10
8秒前
Tyler发布了新的文献求助10
9秒前
王杰发布了新的文献求助10
10秒前
bkagyin应助天天采纳,获得10
11秒前
悟123完成签到 ,获得积分10
13秒前
圆珠笔发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
cherish发布了新的文献求助10
17秒前
烟花应助朱zhu采纳,获得10
17秒前
lu完成签到,获得积分10
20秒前
orange发布了新的文献求助10
20秒前
21秒前
英俊的铭应助翟闻雨采纳,获得10
21秒前
21秒前
ZhouYW应助小龅牙吖采纳,获得10
24秒前
落雁沙发布了新的文献求助10
26秒前
辣辣发布了新的文献求助10
26秒前
26秒前
岚岚完成签到,获得积分10
27秒前
27秒前
善学以致用应助狂野飞槐采纳,获得10
29秒前
30秒前
简单水蓉发布了新的文献求助10
31秒前
科研通AI5应助Lee采纳,获得10
33秒前
34秒前
JamesPei应助落雁沙采纳,获得10
34秒前
薛十枫宇关注了科研通微信公众号
35秒前
35秒前
李健的小迷弟应助orange采纳,获得10
35秒前
36秒前
翟闻雨完成签到,获得积分10
36秒前
铅笔995发布了新的文献求助10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635