Identifying Depression in the Elderly Using Gait Accelerometry

萧条(经济学) 加速度计 步态 物理医学与康复 特征(语言学) 心理学 机器学习 物理疗法 人工智能 计算机科学 医学 语言学 哲学 经济 宏观经济学 操作系统
作者
Dawoon Jung,Jin-Wook Kim,Kyung-Ryoul Mun
标识
DOI:10.1109/embc48229.2022.9871877
摘要

As the number of elderly people suffering from depression increases today, new techniques for active monitoring of depression are in need than ever. Hence this study aimed to propose an approach of identifying depression in the elderly using gait accelerometry and a machine learning algorithm. A total of 45 community-dwelling elderly individuals participated in the study. Twenty-two out of 45 participants were patients with depression and the remaining 23 participants were individuals without depression. The participants completed a 7-meter walking twice at their preferred speeds with an accelerometer on their lower back. The anterior-posterior acceleration signals measured at the lower back while walking were segmented into acceleration falling and rising phases. Then eight descriptive statistical and six morphological parameters were extracted from each phase. The extracted parameters were ordered chronologically and used as a gait sequence feature. The 4-fold cross-validation of the bidirectional long short-term memory network-based classifiers that used the gait sequence feature as input showed an average accuracy of 0.956 in classifying the elderly with depression and those without depression. The study is expected to serve as a milestone exploring the use of gait accelerometry in assessing various health conditions in the future. Clinical Relevance— The findings of this study will pave a new way for self-monitoring of health conditions in the daily life of individuals, which can open the door for earlier recognition of health risks and more timely treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜜糖完成签到,获得积分10
刚刚
刚刚
就是一种水稻的完成签到,获得积分10
1秒前
我很好发布了新的文献求助10
1秒前
于林渤完成签到,获得积分10
1秒前
阿牛发布了新的文献求助10
1秒前
季生完成签到,获得积分10
1秒前
阮人雄完成签到,获得积分10
2秒前
Virtue发布了新的文献求助10
2秒前
aa完成签到,获得积分10
2秒前
leodu完成签到,获得积分10
2秒前
2秒前
3秒前
ED发布了新的文献求助200
3秒前
4秒前
云影cns完成签到 ,获得积分10
4秒前
大方弘文完成签到,获得积分10
5秒前
Jasper应助马克董采纳,获得10
5秒前
斯文败类应助Lei采纳,获得10
5秒前
清水小镇完成签到,获得积分10
5秒前
三叶葵完成签到,获得积分10
5秒前
水木果冻应助米大王采纳,获得10
6秒前
科目三应助米大王采纳,获得10
6秒前
7秒前
7秒前
狂野大有发布了新的文献求助10
8秒前
初a完成签到,获得积分10
8秒前
9秒前
呜呼啦呼发布了新的文献求助10
9秒前
meteor完成签到,获得积分10
9秒前
万能图书馆应助光能使者采纳,获得10
10秒前
小蘑菇应助小程同学采纳,获得10
10秒前
toto完成签到 ,获得积分10
10秒前
乐乐发布了新的文献求助10
11秒前
Yanfei完成签到 ,获得积分10
11秒前
11完成签到,获得积分10
11秒前
HX完成签到,获得积分10
11秒前
12秒前
lalala发布了新的文献求助10
12秒前
小蘑菇应助大大怪采纳,获得10
13秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Considering a Biologic: What's a Clinician to Do? Screening and Laboratory Monitoring for Biologic Therapies in the Treatment of Psoriasis 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875740
求助须知:如何正确求助?哪些是违规求助? 3418371
关于积分的说明 10708542
捐赠科研通 3142950
什么是DOI,文献DOI怎么找? 1734128
邀请新用户注册赠送积分活动 836516
科研通“疑难数据库(出版商)”最低求助积分说明 782650