Modelling of radiating shock layers for atmospheric entry at Earth and Mars

火星探测计划 冲击管 辐射传输 天体生物学 计算物理学 休克(循环) 物理 冲击波 机械 统计物理学 量子力学 医学 内科学
作者
Daniel Potter
链接
摘要

This thesis investigates the modelling of radiating shock layers encountered during atmospheric entry from space. Specifically, the conditions relevant to entry at Earth and Mars from hyperbolic trajectories are considered. Such trajectories are characteristic of the interplanetary transits that would be required for the human exploration of Mars, for example. A set of computational tools for the simulation of radiating shock layers is presented, and then applied to simulate shock tube and expansion tunnel experiments performed in both the EAST facility at NASA Ames and the X2 facility at the University of Queensland. Appropriate thermodynamic, transport and spectral radiation models for the species of interest in the Ar–C–N–O elemental system have been developed. Expressions for multitemperature thermodynamic coefficients for 11 species air and 22 species Mars gas are derived from statistical mechanics. Viscosity, conductivity and diffusivity coefficients are calculated by applying the Gupta-Yos mixture rules. A complete set of binary collision integrals are compiled from critically selected sources in the literature, where preference is given to data based on computational chemistry and experimental measurements. A spectral radiation model describing atomic and diatomic bound-bound transitions via a line-by-line approach is presented, while continuum transitions are approximated by hydrogenic and step models. Collisional-radiative models for Ar, C, N, O, C2, CN, CO, N2 and N2+ are implemented for calculating the non-Boltzmann electronic level populations of these species in a temporally decoupled manner. For the simulation of shock tube experiments, two- and three-temperature formulations of the one-dimensional post-shock relaxation equations are implemented. The chemical kinetic and thermal energy exchange processes are fully coupled with the gas dynamics, and the radiation source term is modelled in the optically thin and thick limits that bound the solution space. Prior to the comparison with experimental data, the one-dimensional post-shock relaxation equations are applied to simulate flow conditions representative of hyperbolic entry at Earth and Mars; specifically, the Fire II t = 1634 s and t = 1636 s trajectory points and hypothetical 8.5 and 9.7 km/s Mars aerocapture conditions are considered. For these conditions comparisons are made with published solutions to verify the code implementation, and various physical models are applied to assess the sensitivity of the solutions to the underlying physics. The one-dimensional post-shock relaxation equations are then applied to simulate shock tube experiments performed in the EAST and X2 facilities. For the EAST facility, nominally 10 km/sair conditions and a 8.5 km/s Mars condition are considered. For the X2 facility, an 11 km/s air condition is considered. Comparisons with both ultraviolet and infrared spatially resolved spectra are made for all experiments. For the air conditions, good agreement (within the limits of experimental uncertainty) is observed for the higher pressure conditions considered (40 Pa), while some discrepancies emerge for the lower pressure conditions considered (13.3 and 16 Pa). For the 8.5 km/s Mars condition, certain spectral features such as the the important CO Fourth Positive band system, CN Violet band system and atomic C lines in the infrared are well described, while others such as and atomic C lines in the ultraviolet and atomic O lines are overestimated. Overall, shock tube comparisons show the total measured radiation is able to be estimated within 30% for N2–O2 mixtures and within 50% for CO2–N2 mixtures. In contrast to shock tube experiments where the flow is well described by a one-dimensional variation of properties, expansion tunnel experiments are inherently multidimensional. For simulating these experiments, modifications to an existing time-accurate Navier–Stokes code have been made to allow the calculation of radiating, partially ionised plasmas. The governing equations for a two-temperature multi-species gas are implemented. The tangent-slab model and a ray-tracing based model are implemented for computing the radiation source term. Radiation-flowfield coupling is treated in a loosely coupled manner. The chemical kinetic and thermal energy exchange source terms are applied in an ‘operator split’ fashion; this approach is validated by comparisons with solutions from the fully coupled post-shock relaxation equations. Two expansion tunnel experiments are then considered: (1) a 47 MJ/kg N2–O2 condition with a 1:10 scale Hayabusa model, and (2) a 37 MJ/kg CO2–N2 condition with a 25mm diameter cylinder model. For both experiments, the freestream conditions generated by the X2 facility are firstly estimated by a novel, simplified strategy based on one-dimensional simulations of the secondary diaphragm rupture and Navier–Stokes simulation of the test gas expansion through the hypersonic nozzle. The freestream conditions so determined are then applied to simulate the radiating shock layer formed by the test gas recompression over the models. From these radiatively-coupled simulations, spatially resolved spectral intensity fields are post-processed and compared with the experimental measurements. For the 47 MJ/kg N2–O2 condition, comparisons with both ultraviolet and infrared spectra are made, while for the 37 MJ/kg CO2–N2 ultraviolet spectra are compared. While good qualitative agreement is found for the CO2–N2 condition, the intensity profiles for the N2–O2 condition show substantial discrepancy. Reasons for the difference between calculation and experiment are discussed. Finally, the binary scaling hypothesis is numerically assessed by comparing simulations of the subscale Hayabusa model with an effective flight equivalent. While similitude in the surface radiative flux is demonstrated for radiatively uncoupled simulations, the consideration of radiation-flowfield coupling is found to reduce the flight radiative flux disproportionally to the subscale radiative flux. The flight radiative flux at the stagnation point is calculated to be reduced by 80% when radiation coupling is considered, while the reduction is only 23% for the subscale radiative flux.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助LNE采纳,获得10
2秒前
carl发布了新的文献求助10
2秒前
3秒前
5秒前
撒大苏打完成签到,获得积分10
5秒前
领导范儿应助蓝色采纳,获得10
6秒前
斯文问旋发布了新的文献求助10
7秒前
Cherish应助布曲采纳,获得10
8秒前
iwdm完成签到,获得积分10
9秒前
10秒前
六沉完成签到 ,获得积分10
11秒前
大模型应助carl采纳,获得10
12秒前
12秒前
猪猪hero发布了新的文献求助10
12秒前
热沙来提发布了新的文献求助10
14秒前
今后应助Master采纳,获得10
14秒前
14秒前
平常安雁完成签到 ,获得积分10
15秒前
Jasper应助科研小菜鸟i采纳,获得10
16秒前
cicade发布了新的文献求助10
17秒前
19秒前
猪猪hero完成签到,获得积分10
21秒前
zoobijmy发布了新的文献求助10
21秒前
QJL完成签到,获得积分10
23秒前
雨琴完成签到,获得积分10
23秒前
23秒前
junren完成签到,获得积分10
23秒前
iwdm关注了科研通微信公众号
24秒前
liu完成签到 ,获得积分10
29秒前
29秒前
深情安青应助cicade采纳,获得10
31秒前
zoobijmy完成签到,获得积分20
33秒前
细心书蕾完成签到 ,获得积分10
33秒前
34秒前
djc完成签到,获得积分10
34秒前
xunl完成签到,获得积分10
34秒前
37秒前
41秒前
认真的小熊饼干完成签到,获得积分10
43秒前
冷艳的小懒虫完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745