Automated Detection of Glaucoma With Interpretable Machine Learning Using Clinical Data and Multimodal Retinal Images

青光眼 人工智能 视网膜 计算机科学 医学 计算机视觉 眼科 模式识别(心理学) 验光服务
作者
Parmita Mehta,Christine A. Petersen,Joanne C. Wen,Michael R. Banitt,Philip Chen,Karine D. Bojikian,Catherine Egan,Su‐In Lee,Magdalena Balazinska,Aaron Lee,Ariel Rokem
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:231: 154-169 被引量:81
标识
DOI:10.1016/j.ajo.2021.04.021
摘要

Purpose To develop a multimodal model to automate glaucoma detection Design Development of a machine-learning glaucoma detection model Methods We selected a study cohort from the UK Biobank data set with 1193 eyes of 863 healthy subjects and 1283 eyes of 771 subjects with glaucoma. We trained a multimodal model that combines multiple deep neural nets, trained on macular optical coherence tomography volumes and color fundus photographs, with demographic and clinical data. We performed an interpretability analysis to identify features the model relied on to detect glaucoma. We determined the importance of different features in detecting glaucoma using interpretable machine learning methods. We also evaluated the model on subjects who did not have a diagnosis of glaucoma on the day of imaging but were later diagnosed (progress-to-glaucoma [PTG]). Results Results show that a multimodal model that combines imaging with demographic and clinical features is highly accurate (area under the curve 0.97). Interpretation of this model highlights biological features known to be related to the disease, such as age, intraocular pressure, and optic disc morphology. Our model also points to previously unknown or disputed features, such as pulmonary function and retinal outer layers. Accurate prediction in PTG highlights variables that change with progression to glaucoma—age and pulmonary function. Conclusions The accuracy of our model suggests distinct sources of information in each imaging modality and in the different clinical and demographic variables. Interpretable machine learning methods elucidate subject-level prediction and help uncover the factors that lead to accurate predictions, pointing to potential disease mechanisms or variables related to the disease. To develop a multimodal model to automate glaucoma detection Development of a machine-learning glaucoma detection model We selected a study cohort from the UK Biobank data set with 1193 eyes of 863 healthy subjects and 1283 eyes of 771 subjects with glaucoma. We trained a multimodal model that combines multiple deep neural nets, trained on macular optical coherence tomography volumes and color fundus photographs, with demographic and clinical data. We performed an interpretability analysis to identify features the model relied on to detect glaucoma. We determined the importance of different features in detecting glaucoma using interpretable machine learning methods. We also evaluated the model on subjects who did not have a diagnosis of glaucoma on the day of imaging but were later diagnosed (progress-to-glaucoma [PTG]). Results show that a multimodal model that combines imaging with demographic and clinical features is highly accurate (area under the curve 0.97). Interpretation of this model highlights biological features known to be related to the disease, such as age, intraocular pressure, and optic disc morphology. Our model also points to previously unknown or disputed features, such as pulmonary function and retinal outer layers. Accurate prediction in PTG highlights variables that change with progression to glaucoma—age and pulmonary function. The accuracy of our model suggests distinct sources of information in each imaging modality and in the different clinical and demographic variables. Interpretable machine learning methods elucidate subject-level prediction and help uncover the factors that lead to accurate predictions, pointing to potential disease mechanisms or variables related to the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lmd完成签到,获得积分10
2秒前
2秒前
李雅琪发布了新的文献求助10
4秒前
5秒前
5秒前
dou完成签到 ,获得积分10
6秒前
大模型应助甜甜的小龙人采纳,获得30
6秒前
6秒前
汉堡包应助迟到虞姬采纳,获得10
7秒前
haifang完成签到,获得积分10
8秒前
8秒前
Singularity发布了新的文献求助50
8秒前
8秒前
陈佳伟完成签到,获得积分10
9秒前
传奇3应助小裙采纳,获得10
10秒前
李星星发布了新的文献求助10
10秒前
鸡蛋黄完成签到,获得积分10
11秒前
子车茗应助活泼的飞鸟采纳,获得50
11秒前
Hello应助franklylyly采纳,获得10
11秒前
妖风发布了新的文献求助10
11秒前
发嗲的雨筠完成签到,获得积分10
12秒前
世界需要我完成签到,获得积分10
12秒前
12秒前
滕皓轩发布了新的文献求助50
12秒前
13秒前
14秒前
zhangtong完成签到,获得积分10
15秒前
16秒前
科研包虫发布了新的文献求助10
17秒前
17秒前
18秒前
Akim应助复杂白凡采纳,获得10
18秒前
18秒前
18秒前
19秒前
大模型应助ZIJUNZHAO采纳,获得10
19秒前
20秒前
wssamuel完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406252
求助须知:如何正确求助?哪些是违规求助? 3891566
关于积分的说明 12110588
捐赠科研通 3536583
什么是DOI,文献DOI怎么找? 1940633
邀请新用户注册赠送积分活动 981360
科研通“疑难数据库(出版商)”最低求助积分说明 877892