A multitask dual‐stream attention network for the identification of KRAS mutation in colorectal cancer

结直肠癌 鉴定(生物学) 克拉斯 对偶(语法数字) 突变 癌症 医学 肿瘤科 计算生物学 遗传学 内科学 生物 基因 植物 艺术 文学类
作者
Kai Song,Zijuan Zhao,Yulan Ma,JiaWen Wang,Wei Wu,Yan Qiang,Juanjuan Zhao,Suman Chaudhary
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 254-270 被引量:9
标识
DOI:10.1002/mp.15361
摘要

Abstract Purpose It is of great significance to accurately identify the KRAS gene mutation status for patients in tumor prognosis and personalized treatment. Although the computer‐aided diagnosis system based on deep learning has gotten all‐round development, its performance still cannot meet the current clinical application requirements due to the inherent limitations of small‐scale medical image data set and inaccurate lesion feature extraction. Therefore, our aim is to propose a deep learning model based on T2 MRI of colorectal cancer (CRC) patients to identify whether KRAS gene is mutated. Methods In this research, a multitask attentive model is proposed to identify KRAS gene mutations in patients, which is mainly composed of a segmentation subnetwork and an identification subnetwork. Specifically, at first, the features extracted by the encoder of segmentation model are used as guidance information to guide the two attention modules in the identification network for precise activation of the lesion area. Then the original image of the lesion and the segmentation result are concatenated for feature extraction. Finally, features extracted from the second step are combined with features activated by the attention modules to identify the gene mutation status. In this process, we introduce the interlayer loss function to encourage the similarity of the two subnetwork parameters and ensure that the key features are fully extracted to alleviate the overfitting problem caused by small data set to some extent. Results The proposed identification model is benchmarked primarily using 15‐fold cross validation. Three hundred and eighty‐two images from 36 clinical cases were used to test the model. For the identification of KRAS mutation status, the average accuracy is 89.95 1.23%, the average sensitivity is 89.29 1.79%, the average specificity is 90.53 2.45%, and the average area under the curve (AUC) is 95.73 0.52%. For segmentation of lesions, the average dice is 88.11 0.86%. Conclusions We developed a novel deep learning–based model to identify the KRAS status in CRC. We demonstrated the excellent properties of the proposed identification through comparison with ground truth gene mutation status of 36 clinical cases. And all these results show that the novel method has great potential for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
平奥辉应助学术辉采纳,获得10
1秒前
背后勒发布了新的文献求助10
3秒前
4秒前
4秒前
Kail完成签到,获得积分10
4秒前
4秒前
Limin发布了新的文献求助10
5秒前
陈晓曦发布了新的文献求助10
5秒前
直率的鱼发布了新的文献求助10
6秒前
7秒前
7秒前
共享精神应助Mine采纳,获得10
8秒前
Owen应助Limin采纳,获得10
10秒前
11秒前
11秒前
CipherSage应助搬砖美少女采纳,获得10
12秒前
12秒前
斯文败类应助Doinb采纳,获得10
13秒前
14秒前
14秒前
15秒前
lei完成签到,获得积分10
16秒前
三台发布了新的文献求助10
16秒前
chen发布了新的文献求助10
17秒前
18秒前
顺利紫山发布了新的文献求助10
18秒前
Lucas应助清眸采纳,获得10
18秒前
壮观冷卉给壮观冷卉的求助进行了留言
20秒前
Mine发布了新的文献求助10
20秒前
20秒前
qq发布了新的文献求助10
20秒前
21秒前
irisjlj发布了新的文献求助10
22秒前
文献菜鸟完成签到 ,获得积分10
23秒前
23秒前
24秒前
深情安青应助十六圆采纳,获得10
25秒前
25秒前
OKOK应助负责的方盒采纳,获得10
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4160506
求助须知:如何正确求助?哪些是违规求助? 3696300
关于积分的说明 11672765
捐赠科研通 3387951
什么是DOI,文献DOI怎么找? 1857717
邀请新用户注册赠送积分活动 918662
科研通“疑难数据库(出版商)”最低求助积分说明 831634