Guided Event Filtering: Synergy between Intensity Images and Neuromorphic Events for High Performance Imaging

计算机科学 人工智能 计算机视觉 事件(粒子物理) 噪音(视频) 神经形态工程学 高动态范围 帧速率 帧(网络) 机器人学 图像传感器 图像分辨率 实时计算 机器人 动态范围 图像(数学) 人工神经网络 电信 物理 量子力学
作者
Peiqi Duan,Zihao W. Wang,Boxin Shi,Oliver Cossairt,Tiejun Huang,Aggelos K. Katsaggelos
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:20
标识
DOI:10.1109/tpami.2021.3113344
摘要

Many visual and robotics tasks in real-world scenarios rely on robust handling of high speed motion and high dynamic range (HDR) with effectively high spatial resolution and low noise. Such stringent requirements, however, cannot be directly satisfied by a single imager or imaging modality, rather by multi-modal sensors with complementary advantages. In this paper, we address high performance imaging by exploring the synergy between traditional frame-based sensors with high spatial resolution and low sensor noise, and emerging event-based sensors with high speed and high dynamic range. We introduce a novel computational framework, termed Guided Event Filtering (GEF), to process these two streams of input data and output a stream of super-resolved yet noise-reduced events. To generate high quality events, GEF first registers the captured noisy events onto the guidance image plane according to our flow model. it then performs joint image filtering that inherits the mutual structure from both inputs. Lastly, GEF re-distributes the filtered event frame in the space-time volume while preserving the statistical characteristics of the original events. When the guidance images under-perform, GEF incorporates an event self-guiding mechanism that resorts to neighbor events for guidance. We demonstrate the benefits of GEF by applying the output high quality events to existing event-based algorithms across diverse application categories, including high speed object tracking, depth estimation, high frame-rate video synthesis, and super resolution/HDR/color image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
肖肖完成签到,获得积分10
2秒前
剑K发布了新的文献求助10
3秒前
toffee完成签到,获得积分20
4秒前
深情安青应助Kz采纳,获得10
5秒前
CipherSage应助duou采纳,获得10
5秒前
可爱的函函应助yy采纳,获得10
6秒前
森森完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Jasper应助陈爽er采纳,获得10
6秒前
Akim应助王心悦采纳,获得10
6秒前
PSYxx完成签到,获得积分10
7秒前
思源应助luoshikun采纳,获得10
8秒前
徐嘉雯发布了新的文献求助10
9秒前
汉堡包应助顺心从霜采纳,获得10
9秒前
10秒前
songjing完成签到,获得积分10
11秒前
11秒前
cssfsa发布了新的文献求助100
11秒前
研友_8RyzBZ发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
超帅的访云完成签到,获得积分10
14秒前
乐乐应助贺兰采纳,获得10
15秒前
哈哈完成签到 ,获得积分10
15秒前
Lucas应助Chenq1nss采纳,获得10
15秒前
16秒前
科研通AI6应助高兴的水卉采纳,获得10
16秒前
17秒前
17秒前
卜谷雪完成签到,获得积分10
18秒前
changping应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075152
求助须知:如何正确求助?哪些是违规求助? 4295084
关于积分的说明 13383317
捐赠科研通 4116756
什么是DOI,文献DOI怎么找? 2254446
邀请新用户注册赠送积分活动 1259062
关于科研通互助平台的介绍 1191876