Updating the national soil map of Nepal through digital soil mapping

土壤测量 土壤科学 克里金 土壤功能 土工试验 地质统计学 地理信息系统 土壤质量 地理 土壤分类 水文学(农业) 土地利用 土壤类型 土壤系列
作者
Sushil Lamichhane,Lalit Kumar,Kabindra Adhikari
出处
期刊:Geoderma [Elsevier]
卷期号:394: 115041-115041 被引量:21
标识
DOI:10.1016/j.geoderma.2021.115041
摘要

While most legacy soil maps are available at coarse spatial detail with composite mapping units, high resolution and detailed soil maps are desired for various land resource applications. In time and resource constrained circumstances, the application of disaggregation methods and modelling approaches that capitalise on existing, less detailed soil maps is an important alternative method for a more rapid generation of soil maps at finer resolutions. A legacy soil map of 1:1,000,000 scale for Nepal was disaggregated using “Disaggregation and Harmonisation of Soil Map units through Resampled Classification Trees” (DSMART) tool with the C5.0 classification tree algorithm and an area proportional virtual sampling technique. Environmental covariates sourced from remote sensing, digital elevation model, climatic databases, and national databases were used for predictive mapping of soils. The predicted map was found to show more detailed soil information in comparison to the original soil map. Accuracy assessment with independent datasets showed that the overall accuracy of prediction was 40.4% (51.2% on 3x3 window) while considering the level of Reference Soil Groups only, and 22.1% (32.6% on 3x3 window) for the soil groups with 1st principal qualifier. Geology was the most important covariate, followed by the minimum temperature of the coldest month, elevation, valley depth and land cover. Amidst the scarcity of spatially explicit detailed soil information, this disaggregated soil map can be a useful resource as a more detailed version of the legacy soil map of Nepal for individuals concerned with research, planning and management of land resources. Environmental covariates used in this study may be useful when disaggregating soil maps in similar environmental settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助谦让的青易采纳,获得10
1秒前
2秒前
sssaasa完成签到,获得积分20
4秒前
CodeCraft应助zyc采纳,获得10
5秒前
hhh发布了新的文献求助10
6秒前
独特阑香完成签到,获得积分10
7秒前
谦让的青易完成签到,获得积分20
8秒前
9秒前
土豆炒蛋完成签到,获得积分10
10秒前
pp完成签到 ,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
ossantu发布了新的文献求助10
14秒前
15秒前
小松鼠完成签到 ,获得积分10
16秒前
16秒前
科研小白发布了新的文献求助10
17秒前
hao发布了新的文献求助10
18秒前
19秒前
ossantu完成签到,获得积分10
20秒前
隐形曼青应助无情曼易采纳,获得10
20秒前
24秒前
Hubry发布了新的文献求助10
25秒前
zyc发布了新的文献求助10
25秒前
25秒前
zhongying完成签到 ,获得积分10
27秒前
我是老大应助科研通管家采纳,获得10
28秒前
xxfsx应助科研通管家采纳,获得10
28秒前
无极微光应助科研通管家采纳,获得20
28秒前
打打应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
无极微光应助科研通管家采纳,获得20
28秒前
852应助科研通管家采纳,获得10
28秒前
xxfsx应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
xxfsx应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520335
求助须知:如何正确求助?哪些是违规求助? 4612090
关于积分的说明 14531959
捐赠科研通 4549688
什么是DOI,文献DOI怎么找? 2493091
邀请新用户注册赠送积分活动 1474324
关于科研通互助平台的介绍 1445962