MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Yao6666发布了新的文献求助10
1秒前
Accepted完成签到,获得积分10
1秒前
1秒前
SYLH应助李健采纳,获得10
1秒前
小s完成签到,获得积分10
2秒前
淡定小翠完成签到,获得积分20
2秒前
weilao发布了新的文献求助10
3秒前
3秒前
st发布了新的文献求助10
3秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助20
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
cxxxxx完成签到,获得积分10
6秒前
6秒前
mayue完成签到,获得积分10
6秒前
Fn发布了新的文献求助10
7秒前
7秒前
7秒前
Yanfei完成签到 ,获得积分20
7秒前
8秒前
SYLH应助李健采纳,获得10
8秒前
可靠连虎发布了新的文献求助10
8秒前
善学以致用应助耶?采纳,获得10
9秒前
哇哈哈发布了新的文献求助10
10秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801768
求助须知:如何正确求助?哪些是违规求助? 3347564
关于积分的说明 10334227
捐赠科研通 3063725
什么是DOI,文献DOI怎么找? 1682035
邀请新用户注册赠送积分活动 807871
科研通“疑难数据库(出版商)”最低求助积分说明 763921