Automated Identification of Diabetic Retinopathy Using Deep Learning

医学 糖尿病性视网膜病变 眼底(子宫) 接收机工作特性 人工智能 医学诊断 公制(单位) 深度学习 视网膜病变 介绍 眼科 验光服务 糖尿病 机器学习 计算机科学 病理 内科学 家庭医学 经济 内分泌学 运营管理
作者
Rishab Gargeya,Theodore Leng
出处
期刊:Ophthalmology [Elsevier]
卷期号:124 (7): 962-969 被引量:1169
标识
DOI:10.1016/j.ophtha.2017.02.008
摘要

Diabetic retinopathy (DR) is one of the leading causes of preventable blindness globally. Performing retinal screening examinations on all diabetic patients is an unmet need, and there are many undiagnosed and untreated cases of DR. The objective of this study was to develop robust diagnostic technology to automate DR screening. Referral of eyes with DR to an ophthalmologist for further evaluation and treatment would aid in reducing the rate of vision loss, enabling timely and accurate diagnoses.We developed and evaluated a data-driven deep learning algorithm as a novel diagnostic tool for automated DR detection. The algorithm processed color fundus images and classified them as healthy (no retinopathy) or having DR, identifying relevant cases for medical referral.A total of 75 137 publicly available fundus images from diabetic patients were used to train and test an artificial intelligence model to differentiate healthy fundi from those with DR. A panel of retinal specialists determined the ground truth for our data set before experimentation. We also tested our model using the public MESSIDOR 2 and E-Ophtha databases for external validation. Information learned in our automated method was visualized readily through an automatically generated abnormality heatmap, highlighting subregions within each input fundus image for further clinical review.We used area under the receiver operating characteristic curve (AUC) as a metric to measure the precision-recall trade-off of our algorithm, reporting associated sensitivity and specificity metrics on the receiver operating characteristic curve.Our model achieved a 0.97 AUC with a 94% and 98% sensitivity and specificity, respectively, on 5-fold cross-validation using our local data set. Testing against the independent MESSIDOR 2 and E-Ophtha databases achieved a 0.94 and 0.95 AUC score, respectively.A fully data-driven artificial intelligence-based grading algorithm can be used to screen fundus photographs obtained from diabetic patients and to identify, with high reliability, which cases should be referred to an ophthalmologist for further evaluation and treatment. The implementation of such an algorithm on a global basis could reduce drastically the rate of vision loss attributed to DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
叶潭完成签到 ,获得积分10
2秒前
束负完成签到 ,获得积分10
2秒前
陈杰发布了新的文献求助10
2秒前
2秒前
陈砍砍完成签到 ,获得积分10
4秒前
xiaofeixia完成签到 ,获得积分10
5秒前
执念发布了新的文献求助10
5秒前
斯文败类应助聿1988采纳,获得10
5秒前
Orange应助绿狗玩偶采纳,获得10
6秒前
敏敏发布了新的文献求助10
6秒前
高兴的蜻蜓完成签到,获得积分10
6秒前
科研通AI2S应助shenwei采纳,获得10
7秒前
7秒前
8秒前
9秒前
曾经问雁发布了新的文献求助10
11秒前
传奇3应助小样采纳,获得10
11秒前
绿海完成签到,获得积分10
12秒前
Lee完成签到,获得积分10
12秒前
13秒前
Sweeney发布了新的文献求助10
13秒前
13秒前
Owen应助失眠的夏蓉采纳,获得10
13秒前
Luminous完成签到,获得积分10
15秒前
CodeCraft应助Teferi采纳,获得100
15秒前
16秒前
1461644768发布了新的文献求助10
18秒前
yier发布了新的文献求助10
19秒前
Criminology34应助www采纳,获得10
19秒前
20秒前
聿1988发布了新的文献求助10
21秒前
22秒前
24秒前
25秒前
媛媛一定发sci完成签到,获得积分10
25秒前
abcd_1067发布了新的文献求助10
27秒前
领导范儿应助南斋帝采纳,获得10
27秒前
李健应助YANBINGHANG采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962