Automated Identification of Diabetic Retinopathy Using Deep Learning

医学 糖尿病性视网膜病变 眼底(子宫) 接收机工作特性 人工智能 医学诊断 公制(单位) 深度学习 视网膜病变 介绍 眼科 验光服务 糖尿病 机器学习 计算机科学 病理 内科学 家庭医学 经济 内分泌学 运营管理
作者
Rishab Gargeya,Theodore Leng
出处
期刊:Ophthalmology [Elsevier BV]
卷期号:124 (7): 962-969 被引量:1122
标识
DOI:10.1016/j.ophtha.2017.02.008
摘要

Diabetic retinopathy (DR) is one of the leading causes of preventable blindness globally. Performing retinal screening examinations on all diabetic patients is an unmet need, and there are many undiagnosed and untreated cases of DR. The objective of this study was to develop robust diagnostic technology to automate DR screening. Referral of eyes with DR to an ophthalmologist for further evaluation and treatment would aid in reducing the rate of vision loss, enabling timely and accurate diagnoses.We developed and evaluated a data-driven deep learning algorithm as a novel diagnostic tool for automated DR detection. The algorithm processed color fundus images and classified them as healthy (no retinopathy) or having DR, identifying relevant cases for medical referral.A total of 75 137 publicly available fundus images from diabetic patients were used to train and test an artificial intelligence model to differentiate healthy fundi from those with DR. A panel of retinal specialists determined the ground truth for our data set before experimentation. We also tested our model using the public MESSIDOR 2 and E-Ophtha databases for external validation. Information learned in our automated method was visualized readily through an automatically generated abnormality heatmap, highlighting subregions within each input fundus image for further clinical review.We used area under the receiver operating characteristic curve (AUC) as a metric to measure the precision-recall trade-off of our algorithm, reporting associated sensitivity and specificity metrics on the receiver operating characteristic curve.Our model achieved a 0.97 AUC with a 94% and 98% sensitivity and specificity, respectively, on 5-fold cross-validation using our local data set. Testing against the independent MESSIDOR 2 and E-Ophtha databases achieved a 0.94 and 0.95 AUC score, respectively.A fully data-driven artificial intelligence-based grading algorithm can be used to screen fundus photographs obtained from diabetic patients and to identify, with high reliability, which cases should be referred to an ophthalmologist for further evaluation and treatment. The implementation of such an algorithm on a global basis could reduce drastically the rate of vision loss attributed to DR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
womodou完成签到,获得积分10
1秒前
科研通AI5应助爱听歌半双采纳,获得10
1秒前
科研通AI2S应助谷雨采纳,获得10
1秒前
校长发布了新的文献求助10
3秒前
anan发布了新的文献求助10
4秒前
ZjutY完成签到,获得积分20
5秒前
5秒前
超级寒香完成签到,获得积分20
5秒前
梅梅超勇敢完成签到 ,获得积分10
6秒前
传奇3应助慈祥的绮采纳,获得10
6秒前
6秒前
超级寒香发布了新的文献求助10
8秒前
西瓜椰奶关注了科研通微信公众号
9秒前
9秒前
9秒前
安静凡旋发布了新的文献求助10
10秒前
李八百发布了新的文献求助10
12秒前
12秒前
13秒前
无私幼蓉完成签到,获得积分10
13秒前
14秒前
YoLo完成签到 ,获得积分10
15秒前
清新的绿海完成签到,获得积分10
15秒前
小二郎应助苏苏苏采纳,获得10
15秒前
16秒前
17秒前
17秒前
18秒前
脑洞疼应助坦率莫言采纳,获得10
18秒前
20秒前
20秒前
20秒前
ChenChen发布了新的文献求助10
21秒前
21秒前
kosang发布了新的文献求助10
22秒前
22秒前
萤火发布了新的文献求助30
23秒前
Stroeve发布了新的文献求助10
24秒前
称心千凝发布了新的文献求助10
24秒前
yx完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793506
求助须知:如何正确求助?哪些是违规求助? 3338452
关于积分的说明 10289653
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676211
邀请新用户注册赠送积分活动 804255
科研通“疑难数据库(出版商)”最低求助积分说明 761806