稀疏逼近
神经编码
计算机科学
联营
模式识别(心理学)
人工智能
突出
K-SVD公司
稀疏矩阵
编码(社会科学)
特征(语言学)
特征提取
图像质量
图像(数学)
数学
高斯分布
量子力学
统计
物理
哲学
语言学
作者
Tao Feng,Dexiang Deng,Yan Jia,Weixia Zhang,Wenxuan Shi,Lian Zou
标识
DOI:10.1177/1729881416669486
摘要
This paper introduces an efficient feature learning framework via sparse coding for no-reference image quality assessment. The important part of the proposed framework is based on sparse feature extraction from a sparse representation matrix, which is computed using a sparse coding algorithm. Image patches extracted from salient regions of unlabeled images are used to learn a dictionary of sparse coding. The ℓ1-norm of the sparse representation is taken as a sparse penalty term in the process of learning the dictionary and computing the sparse representation. A feature detector adopts the ℓ1-norm together with the max-pooling results of the sparse representation matrix as the output sparse features to obtain the objective quality scores. Sparse features of salient regions are evaluated using the LIVE, CSIQ and TID2013 databases, and result in good generalization ability, performing better than or on par with other image quality assessment algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI