Knowledge-Based Reinforcement Learning and Estimation of Distribution Algorithm for Flexible Job Shop Scheduling Problem

初始化 计算机科学 解算器 作业车间调度 分布估计算法 调度(生产过程) 数学优化 流水车间调度 算法 强化学习 地铁列车时刻表 人工智能 数学 操作系统 程序设计语言
作者
Yu Du,Junqing Li,Xiaolong Chen,Peiyong Duan,Quan-Ke Pan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1036-1050 被引量:110
标识
DOI:10.1109/tetci.2022.3145706
摘要

Inthis study, a flexible job shop scheduling problem with time-of-use electricity price constraint is considered. The problem includes machine processing speed, setup time, idle time, and the transportation time between machines. Both maximum completion time and total electricity price are optimized simultaneously. A hybrid multi-objective optimization algorithm of estimation of distribution algorithm and deep Q-network is proposed to solve this. The processing sequence, machine assignment, and processing speed assignment are all described using a three-dimensional solution representation. Two knowledge-based initialization strategies are designed for better performance. In the estimation of distribution algorithm component, three probability matrices corresponding to solution representation are provided. In the deep Q-network component, 34 state features are selected to describe the scheduling situation, while nine knowledge-based actions are defined to refine the scheduling solution, and the reward based on the two objectives is designed. As the knowledge for initialization and optimization strategies, five properties of the considered problem are proposed. The proposed mixed integer linear programming model of the problem is validated by exact solver CPLEX. The results of the numerical testing on wide-range scale instances show that the proposed hybrid algorithm is efficient and effective at solving the integrated flexible job shop scheduling problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨洋完成签到,获得积分10
刚刚
田様应助Mastertry采纳,获得10
2秒前
3秒前
小王完成签到,获得积分10
4秒前
5秒前
6秒前
蜗牛0356发布了新的文献求助20
8秒前
橘络完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助1234采纳,获得10
11秒前
11秒前
莱贝特完成签到,获得积分10
12秒前
ZAY完成签到,获得积分10
12秒前
14秒前
16秒前
彩色的松思完成签到,获得积分10
16秒前
Emper发布了新的文献求助10
16秒前
18秒前
Jasper应助寒冷子轩采纳,获得10
18秒前
19秒前
轻松的贞发布了新的文献求助10
21秒前
卢敏明发布了新的文献求助10
21秒前
21秒前
Emper完成签到,获得积分10
21秒前
喵了个酥完成签到,获得积分10
23秒前
涛老三完成签到 ,获得积分10
24秒前
缥缈浩然发布了新的文献求助10
24秒前
25秒前
28秒前
缥缈浩然完成签到,获得积分10
29秒前
29秒前
29秒前
31秒前
冷傲山彤发布了新的文献求助20
31秒前
寒冷子轩发布了新的文献求助10
33秒前
胖虎发布了新的文献求助10
33秒前
852应助ff采纳,获得20
33秒前
35秒前
35秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669