In-process adaptive dimension correction strategy for laser aided additive manufacturing using laser line scanning

维数(图论) 过程(计算) 点云 一致性(知识库) 机械工程 计算机科学 人工智能 数学 工程类 纯数学 操作系统
作者
Peng Xu,Xiling Yao,Lequn Chen,Chenyang Zhao,Kui Liu,Seung Ki Moon,Guijun Bi
出处
期刊:Journal of Materials Processing Technology [Elsevier BV]
卷期号:303: 117544-117544 被引量:32
标识
DOI:10.1016/j.jmatprotec.2022.117544
摘要

Additive manufacturing (AM) technologies have seen rapid growth in the past decade. Achieving high-quality consistency and accuracy remains a challenge in the fabrication of large-format metallic parts using the directed energy deposition AM processes. An efficient dimension correction strategy is required to prevent build failure during the AM process. In this paper, a laser line scanning sensor was integrated into a robot-based laser aided additive manufacturing (LAAM) system to realise the on-machine measurement of the part geometry. With this system, an in-process adaptive dimension correction strategy was proposed. The dimensional deviations in the intermediate layers could be corrected immediately after they were detected during the LAAM process, thus avoiding excessive dimensional deviation leading to build failure. A tool-path generation process for dimension correction was proposed which did not rely on traditional time-consuming CAD reconstruction. Only 3D point cloud was used directly, enabling the quick response of the LAAM system in restoring the dimensional accuracy. The deviated surface could be automatically filled up, and the subsequent deposition processes were resumed after each cycle of the dimension correction. To facilitate the proposed dimension correction strategy, a Robot Operating System (ROS)-based software platform was developed. Experimental comparisons between the part built with and without correction were conducted. The results demonstrated a significant improvement in dimensional accuracy when the correction strategy was applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南楼青主完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
Akim应助shanshan采纳,获得10
2秒前
拼搏的绿旋完成签到,获得积分10
2秒前
南楼青主发布了新的文献求助10
3秒前
3秒前
JamesPei应助天空没有极限采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助帅气雪糕采纳,获得10
5秒前
MechaniKer发布了新的文献求助10
6秒前
7秒前
猩心发布了新的文献求助30
8秒前
Yan完成签到,获得积分10
8秒前
8秒前
天空没有极限完成签到,获得积分10
9秒前
mcc发布了新的文献求助10
10秒前
Triumph关注了科研通微信公众号
10秒前
谢耳朵发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
13秒前
噜噜噜完成签到,获得积分10
13秒前
锦鲤完成签到 ,获得积分10
13秒前
16秒前
杀殿发布了新的文献求助10
17秒前
shanshan发布了新的文献求助10
18秒前
20秒前
20秒前
20秒前
打打应助ChencanFang采纳,获得30
20秒前
21秒前
21秒前
生动明辉完成签到,获得积分10
21秒前
22秒前
焦焦完成签到,获得积分20
23秒前
泽上完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783657
求助须知:如何正确求助?哪些是违规求助? 3328839
关于积分的说明 10238741
捐赠科研通 3044202
什么是DOI,文献DOI怎么找? 1670861
邀请新用户注册赠送积分活动 799939
科研通“疑难数据库(出版商)”最低求助积分说明 759171