已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Weighted Symmetric Graph Embedding Approach for Link Prediction in Undirected Graphs

嵌入 串联(数学) 计算机科学 链接(几何体) 节点(物理) 理论计算机科学 图嵌入 GSM演进的增强数据速率 二进制数 图形 数学 算法 人工智能 组合数学 算术 结构工程 工程类 计算机网络
作者
Zhixiao Wang,Yahui Chai,Chengcheng Sun,Xiaobin Rui,Hao Mi,Xinyu Zhang,Philip S. Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1037-1047 被引量:11
标识
DOI:10.1109/tcyb.2022.3181810
摘要

Link prediction is an important task in social network analysis and mining because of its various applications. A large number of link prediction methods have been proposed. Among them, the deep learning-based embedding methods exhibit excellent performance, which encodes each node and edge as an embedding vector, enabling easy integration with traditional machine learning algorithms. However, there still remain some unsolved problems for this kind of methods, especially in the steps of node embedding and edge embedding. First, they either share exactly the same weight among all neighbors or assign a completely different weight to each node to obtain the node embedding. Second, they can hardly keep the symmetry of edge embeddings obtained from node representations by direct concatenation or other binary operations such as averaging and Hadamard product. In order to solve these problems, we propose a weighted symmetric graph embedding approach for link prediction. In node embedding, the proposed approach aggregates neighbors in different orders with different aggregating weights. In edge embedding, the proposed approach bidirectionally concatenates node pairs both forwardly and backwardly to guarantee the symmetry of edge representations while preserving local structural information. The experimental results show that our proposed approach can better predict network links, outperforming the state-of-the-art methods. The appropriate aggregating weight assignment and the bidirectional concatenation enable us to learn more accurate and symmetric edge representations for link prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的毛巾完成签到 ,获得积分10
2秒前
烟花应助T_MC郭采纳,获得10
3秒前
nassim发布了新的文献求助10
3秒前
Hqing完成签到 ,获得积分10
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
juile完成签到,获得积分10
7秒前
T_MC郭发布了新的文献求助10
9秒前
9秒前
执念完成签到 ,获得积分10
10秒前
zjx完成签到,获得积分10
12秒前
小黑哥完成签到 ,获得积分10
12秒前
DrN完成签到 ,获得积分10
12秒前
风中的棒棒糖完成签到,获得积分10
13秒前
13秒前
14秒前
T_MC郭发布了新的文献求助10
14秒前
研友_ana完成签到,获得积分10
15秒前
奈布完成签到 ,获得积分20
15秒前
开心的眼睛完成签到,获得积分10
17秒前
haimianbaobao完成签到 ,获得积分10
18秒前
hyg完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
CRYLK完成签到 ,获得积分10
21秒前
科研通AI5应助甜甜觅双采纳,获得10
23秒前
科研通AI5应助苏苏苏采纳,获得200
24秒前
薛雨佳发布了新的文献求助10
26秒前
高兴1江完成签到,获得积分10
26秒前
独享尊崇发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
Mercury应助科研通管家采纳,获得30
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
笑笑完成签到,获得积分10
27秒前
VV2001完成签到,获得积分10
28秒前
29秒前
hyg发布了新的文献求助10
31秒前
疯度发布了新的文献求助10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792392
求助须知:如何正确求助?哪些是违规求助? 3336653
关于积分的说明 10281744
捐赠科研通 3053408
什么是DOI,文献DOI怎么找? 1675585
邀请新用户注册赠送积分活动 803557
科研通“疑难数据库(出版商)”最低求助积分说明 761457