Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer

列线图 阶段(地层学) 医学 内科学 肿瘤科 比例危险模型 结直肠癌 人工智能 T级 癌症 总体生存率 计算机科学 生物 古生物学
作者
Caixia Sun,Bingbing Li,Genxia Wei,Weihao Qiu,Danyi Li,Xiangzhao Li,Xiangyu Liu,Wei Wei,Shuo Wang,Zhenyu Liu,Jie Tian,Liang Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106914-106914 被引量:25
标识
DOI:10.1016/j.cmpb.2022.106914
摘要

Adjuvant chemotherapy is recommended as standard treatment for colorectal cancer (CRC) with stage III according to TNM stage. However, outcomes are varied even among patients receiving similar treatments. We aimed to develop a prognostic signature to stratify outcomes and benefit from different chemotherapy regimens by analyzing whole slide images (WSI) using deep learning.We proposed an unsupervised deep learning network (variational autoencoder and generative adversarial network) in 180,819 image tiles from the training set (147 patients) to develop a WSI signature for predicting the disease-free survival (DFS) and overall survival (OS) of patients, and tested in validation set of 63 patients. An integrated nomogram was constructed to investigate the incremental value of deep learning signature (DLS) to TNM stage for individualized outcomes prediction.The DLS was associated with DFS and OS in both training and validation sets and proved to be an independent prognostic factor. Integrating the DLS and clinicopathologic factors showed better performance (C-index: DFS, 0.748; OS, 0.794; in the validation set) than TNM stage. In patients whose DLS and clinical risk levels were inconsistent, their risk of relapse was reclassified. In the subgroup of patients treated with 3 months, high-DLS was associated with worse DFS (hazard ratio: 3.622-7.728).The proposed based-WSI DLS improved risk stratification and could help identify patients with stage III CRC who may benefit from the prolonged duration of chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
珊瑚海123完成签到,获得积分10
2秒前
2秒前
今天也要开心Y完成签到,获得积分10
3秒前
尼可深蓝完成签到 ,获得积分10
4秒前
11完成签到,获得积分10
4秒前
追寻的怜容完成签到,获得积分10
5秒前
希望天下0贩的0应助www采纳,获得10
5秒前
英俊的铭应助安静的瑾瑜采纳,获得10
6秒前
7秒前
乔心发布了新的文献求助10
7秒前
初初发布了新的文献求助10
8秒前
潇洒诗云完成签到,获得积分10
10秒前
10秒前
哎呦喂完成签到,获得积分10
11秒前
13秒前
11发布了新的文献求助10
13秒前
14秒前
14秒前
17秒前
csz发布了新的文献求助10
19秒前
ltmx完成签到,获得积分10
20秒前
Owen应助乔心采纳,获得10
21秒前
21秒前
胡子西瓜完成签到,获得积分10
22秒前
23秒前
初初完成签到,获得积分10
24秒前
初余发布了新的文献求助10
26秒前
melody发布了新的文献求助30
28秒前
29秒前
domkps完成签到 ,获得积分10
30秒前
33秒前
朝闻道发布了新的文献求助10
33秒前
希望天下0贩的0应助初余采纳,获得10
38秒前
呆呆要努力完成签到 ,获得积分10
38秒前
39秒前
六月六发布了新的文献求助10
39秒前
40秒前
支证业材料科学完成签到,获得积分10
41秒前
晚意意意意意完成签到 ,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327136
关于积分的说明 10229537
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757