(Digital Presentation) All-Solid-State Lithium Batteries: From Materials and Interface Design to Practical Pouch Cell Engineering

电解质 离子电导率 材料科学 化学工程 锂(药物) 纳米技术 准固态 快离子导体 电化学 电导率 化学 电极 工程类 物理化学 内分泌学 医学 色素敏化染料
作者
Changhong Wang
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (6): 2435-2435
标识
DOI:10.1149/ma2022-0162435mtgabs
摘要

All-solid-state lithium batteries (ASSLBs) have gained substantial attention because of their intrinsic safety and high energy density. 1 However, the commercialization of ASSLBs has been stymied by insufficient ionic conductivity of solid-state electrolytes, significant interfacial challenges, as well as the large gap between fundamental research and practical engineering. Over the past several years, we have been dedicated to developing ASSLBs from solid electrolyte synthesis to interface design to engineering practical solid-state pouch cells. First , a wet-chemistry method with a low cost was proposed to produce solid-state electrolytes at the kilogram level with a high room-temperature ionic conductivity (> 1 mS.cm -1 ). 2 Second , the interfacial challenges of ASSLBs have been well addressed via increasing the ionic conductivity of interfacial buffer layers, 3 manipulating interfacial nanostructures, 4, 5 using single-crystal cathodes, 6 deciphering interfacial reaction mechanisms, 7 and constructing artificial solid electrolyte interphases (SEI), 8 which successfully boosted interfacial ion and electron transport kinetics. 9 Resultantly, ASSLBs demonstrated superior electrochemical performance. Third , practical solid-state pouch cells with high energy density have been engineered. Recently, a solvent-free process was proposed to fabricate freestanding and ultrathin inorganic solid electrolyte membranes. 10 Furthermore, a feasible solid-liquid transformable interface was devised to improve the solid-solid ionic contact and accommodate the significant volume change of solid-state pouch cells. 11, 12 The resultant solid-state pouch cells successfully demonstrated high energy density and unparalleled safety. In summary , our research not only provides an in-depth understanding of solid electrolyte synthesis and rational interface design but also offers feasible strategies to commercialize ASSLBs with high energy density, low cost, and excellent safety. References C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li and X. Sun, Energy Environ. Sci. , 2021, 14 , 2577-2619. C. Wang, J. Liang, J. Luo, J. Liu, X. Li, F. Zhao, R. Li, H. Huang, S. Zhao, L. Zhang, J. Wang and X. Sun, Sci. Adv. , 2021, 7 , eabh1896. C. Wang, J. Liang, S. Hwang, X. Li, Y. Zhao, K. Adair, C. Zhao, X. Li, S. Deng, X. Lin, X. Yang, R. Li, H. Huang, L. Zhang, S. Lu, D. Su and X. Sun, Nano Energy , 2020, 72 , 104686. C. Wang, X. Li, Y. Zhao, M. N. Banis, J. Liang, X. Li, Y. Sun, K. R. Adair, Q. Sun, Y. Liu, F. Zhao, S. Deng, X. Lin, R. Li, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, R. Yang, S. Lu and X. Sun, Small Methods , 2019, 3 , 1900261. C. Wang, J. Liang, M. Jiang, X. Li, S. Mukherjee, K. Adair, M. Zheng, Y. Zhao, F. Zhao, S. Zhang, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, C. V. Singh and X. Sun, Nano Energy , 2020, 76 , 105015. C. Wang, R. Yu, S. Hwang, J. Liang, X. Li, C. Zhao, Y. Sun, J. Wang, N. Holmes, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, D. Su and X. Sun, Energy Storage Mater. , 2020, 30 , 98-103. C. Wang, S. Hwang, M. Jiang, J. Liang, Y. Sun, K. Adair, M. Zheng, S. Mukherjee, X. Li, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, J. Wang, C. V. Singh, D. Su and X. Sun, Adv. Energy Mater. , 2021, 11 , 2100210. C. Wang, Y. Zhao, Q. Sun, X. Li, Y. Liu, J. Liang, X. Li, X. Lin, R. Li, K. R. Adair, L. Zhang, R. Yang, S. Lu and X. Sun, Nano Energy , 2018, 53 , 168-174. C. Wang, K. Adair and X. Sun, Acc. Mater. Res. , 2022, 3 , 21-32. C. Wang, R. Yu, H. Duan, Q. Lu, Q. Li, K. R. Adair, D. Bao, Y. Liu, R. Yang, J. Wang, S. Zhao, H. Huang and X. Sun, ACS Energy Lett. , 2022, DOI: 10.1021/acsenergylett.1c02261, 410-416. C. Wang, Q. Sun, Y. Liu, Y. Zhao, X. Li, X. Lin, M. N. Banis, M. Li, W. Li, K. R. Adair, D. Wang, J. Liang, R. Li, L. Zhang, R. Yang, S. Lu and X. Sun, Nano Energy , 2018, 48 , 35-43. C. Wang, K. R. Adair, J. Liang, X. Li, Y. Sun, X. Li, J. Wang, Q. Sun, F. Zhao, X. Lin, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu and X. Sun, Adv. Funct. Mater. , 2019, 29 , 1900392.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIXIXI完成签到 ,获得积分10
刚刚
阅遍SCI完成签到,获得积分10
1秒前
1秒前
lie列发布了新的文献求助10
2秒前
程汐南发布了新的文献求助10
2秒前
4秒前
冬青ouo完成签到,获得积分10
4秒前
fengxiu完成签到 ,获得积分10
5秒前
NexusExplorer应助科科采纳,获得10
6秒前
6秒前
Hilda007发布了新的文献求助10
7秒前
小波发布了新的文献求助20
7秒前
Yangyue完成签到,获得积分10
7秒前
桉韵沁完成签到,获得积分10
7秒前
7秒前
ash完成签到,获得积分10
8秒前
shelley发布了新的文献求助10
8秒前
琪琪发布了新的文献求助10
9秒前
萨赫蛋糕完成签到,获得积分10
10秒前
码头吃薯条完成签到,获得积分10
10秒前
11秒前
喵喵发布了新的文献求助10
11秒前
小祺发布了新的文献求助30
12秒前
13秒前
14秒前
买了束花完成签到,获得积分10
14秒前
16秒前
33发布了新的文献求助10
16秒前
16秒前
王亚平发布了新的文献求助10
17秒前
idiot发布了新的文献求助30
17秒前
Elk完成签到,获得积分10
18秒前
邱权威完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助yzz采纳,获得10
20秒前
高贵书白发布了新的文献求助10
20秒前
20秒前
wanci应助常常采纳,获得10
20秒前
asp完成签到,获得积分10
20秒前
Jasper应助腼腆的不尤采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836