清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

代谢组学 医学 肾脏疾病 内科学 生物信息学
作者
Arthur M Lee,Jian Hu,Yunwen Xu,Alison G Abraham,Rui Xiao,Josef Coresh,Casey Rebholz,Jingsha Chen,Eugene P Rhee,Harold I. Feldman,Vasan S Ramachandran,Paul L Kimmel,Bradley A. Warady,Susan L Furth,Michelle R Denburg
出处
期刊:Journal of the American Society of Nephrology [American Society of Nephrology]
卷期号:33 (2): 375-386
标识
DOI:10.1681/asn.2021040538
摘要

Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN).Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause.ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites.ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
独特的秋完成签到 ,获得积分10
7秒前
休斯顿发布了新的文献求助30
7秒前
changfox完成签到,获得积分10
7秒前
RONG完成签到 ,获得积分10
10秒前
Moyan4332发布了新的文献求助30
11秒前
和平完成签到 ,获得积分10
14秒前
活力雁枫完成签到,获得积分10
16秒前
whuhustwit完成签到,获得积分10
17秒前
落后十八完成签到,获得积分10
24秒前
26秒前
悟空完成签到 ,获得积分10
27秒前
W~舞发布了新的文献求助10
30秒前
xianyaoz完成签到 ,获得积分0
33秒前
xfy完成签到,获得积分10
36秒前
CodeCraft应助科研通管家采纳,获得10
41秒前
Henry完成签到,获得积分10
47秒前
阳炎完成签到,获得积分10
53秒前
Boris完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
一路有你完成签到 ,获得积分10
1分钟前
Rjy完成签到 ,获得积分10
1分钟前
墩墩发布了新的文献求助10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
巧克力完成签到 ,获得积分10
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
七人七发布了新的文献求助30
1分钟前
CJY完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
taoxz521完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
比比谁的速度快应助jyy采纳,获得200
2分钟前
shyxia完成签到 ,获得积分10
2分钟前
wwe完成签到,获得积分10
2分钟前
飞龙在天完成签到,获得积分0
2分钟前
gmc完成签到 ,获得积分10
2分钟前
sweet雪儿妞妞完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008643
求助须知:如何正确求助?哪些是违规求助? 3548305
关于积分的说明 11298767
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810281
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218