Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

代谢组学 医学 肾脏疾病 内科学 生物信息学
作者
Arthur M Lee,Jian Hu,Yunwen Xu,Alison G Abraham,Rui Xiao,Josef Coresh,Casey Rebholz,Jingsha Chen,Eugene P Rhee,Harold I. Feldman,Vasan S Ramachandran,Paul L Kimmel,Bradley A. Warady,Susan L Furth,Michelle R Denburg
出处
期刊:Journal of the American Society of Nephrology [American Society of Nephrology]
卷期号:33 (2): 375-386
标识
DOI:10.1681/asn.2021040538
摘要

Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN).Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause.ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites.ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KX2024完成签到,获得积分10
1秒前
默默的甜瓜完成签到,获得积分10
4秒前
超帅的薯片完成签到,获得积分10
4秒前
黎黎原上草完成签到,获得积分10
4秒前
4秒前
4秒前
小竹子完成签到 ,获得积分10
8秒前
闾丘惜寒完成签到,获得积分10
8秒前
清欢完成签到,获得积分10
9秒前
10秒前
怡然犀牛发布了新的文献求助10
10秒前
芋泥发布了新的文献求助10
10秒前
hjhhje完成签到,获得积分10
11秒前
方圆几里完成签到,获得积分10
11秒前
栗爷完成签到,获得积分0
12秒前
精酿沐舒坦完成签到,获得积分10
13秒前
DavidWebb完成签到,获得积分10
16秒前
LLL完成签到 ,获得积分10
16秒前
zho关闭了zho文献求助
17秒前
18秒前
十年HLX完成签到 ,获得积分10
18秒前
20秒前
20秒前
和谐的饼干完成签到,获得积分10
21秒前
坦率的书竹完成签到 ,获得积分10
21秒前
gougou发布了新的文献求助10
23秒前
27秒前
隐形白开水完成签到,获得积分10
28秒前
小七完成签到,获得积分10
28秒前
曾建完成签到 ,获得积分10
29秒前
可爱的函函应助gougou采纳,获得10
29秒前
一直都不想上班完成签到,获得积分10
30秒前
小螃蟹完成签到 ,获得积分10
30秒前
31秒前
32秒前
瞿霞完成签到 ,获得积分10
32秒前
33秒前
33秒前
星辰大海应助怡然犀牛采纳,获得10
33秒前
ET完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782835
求助须知:如何正确求助?哪些是违规求助? 3328176
关于积分的说明 10235104
捐赠科研通 3043209
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759030