SFA-Net: A Selective Features Absorption Network for Object Detection in Rainy Weather Conditions.

子网 能见度 计算机科学 卷积神经网络 目标检测 人工智能 集合(抽象数据类型) 特征(语言学) 模式识别(心理学) 对象(语法) 计算机视觉 遥感
作者
Shih-Chia Huang,Quoc-Viet Hoang,Trung-Hieu Le
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tnnls.2021.3125679
摘要

In recent years, object detection approaches using deep convolutional neural networks (CNNs) have derived major advances in normal images. However, such success is hardly achieved with rainy images due to lack of visibility. Aiming to bridge this gap, in this article, we present a novel selective features absorption network (SFA-Net) to improve the performance of object detection not only in rainy weather conditions but also in favorable weather conditions. SFA-Net accomplishes this objective by utilizing three subnetworks, where the feature selection subnetwork is concatenated with the object detection subnetwork through the feature absorption subnetwork to form a unified model. To promote further advancement in object detection impaired by rain, we propose a large-scale rainy image dataset, named srRain, which contains both synthetic rainy images and real-world rainy images for training and testing purposes. srRain is comprised of 25,900 rainy images depicting diverse driving scenarios in the presence of rain with a total of 181,164 instances interpreting five common object categories. Experimental results display that our SFA-Net reaches the highest mean average precision (mAP) of 77.53% on a normal image set, 62.52% on a synthetic rainy image set, 37.34% on a collected natural rainy image set, and 32.86% on a published real rainy image set, surpassing current state-of-the-art object detectors and the combination of image deraining and object detection models while retaining a high speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠醉易应助科研通管家采纳,获得20
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
七柚完成签到 ,获得积分10
1秒前
nan发布了新的文献求助10
4秒前
就叫柠檬吧应助happy采纳,获得10
4秒前
风中的凌旋完成签到,获得积分10
7秒前
9秒前
13秒前
专注的契发布了新的文献求助50
13秒前
cdercder应助shenfufff采纳,获得30
14秒前
14秒前
14秒前
15秒前
16秒前
所所应助yin采纳,获得10
16秒前
赘婿应助默默的难破采纳,获得10
18秒前
正直念柏发布了新的文献求助10
18秒前
20秒前
灵巧的以亦完成签到 ,获得积分10
22秒前
ctt-22-1-18完成签到,获得积分10
22秒前
23秒前
23秒前
adagio完成签到,获得积分10
24秒前
英姑应助丰富丹秋采纳,获得10
25秒前
28秒前
28秒前
李存发布了新的文献求助10
29秒前
丘比特应助陈奕迅采纳,获得10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997