已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data Saves Lives—The U.S. Military Must Build a Real-Time Combat Casualty Care Data Ecosystem for the Future Battlefield

战场 军事医学 海军 航空学 军事人员 医疗急救 医学 工程类 地理 历史 古代史 考古
作者
Mason H Remondelli,Jay B Baker,Jonathan D. Stallings,Jennifer M. Gurney,Jeremy Pamplin
出处
期刊:Military Medicine [Oxford University Press]
标识
DOI:10.1093/milmed/usaf392
摘要

Large-scale combat operations (LSCO) will challenge the current U.S. military trauma system with high casualty volumes, prolonged evacuation timelines, and degraded logistics. The Joint Trauma System demonstrated the effectiveness of data-driven medical performance optimization during the Wars in Iraq and Afghanistan, reducing battlefield mortality. However, the current system relies on delayed, manual documentation processes that are inadequate for the operational tempo and complexity of future conflicts. This article advocates for the development of a real-time, automated combat casualty care data ecosystem that supports decision-making, resource allocation, and command and control across echelons. Current modernization efforts, including digital tools such as the Battlefield-assisted Trauma Distributed Observation Kit (BATDOK) and integration platforms like the Operational Medicine Data Service (OMDS) and the System for Injury Monitoring and Outcomes Nexus (SIMON), may improve data capture but are still heavily dependent on human input. We propose a future system centered on passive data collection, scalable edge computing, artificial intelligence-enabled triage and decision support, and seamless integration with tactical networks and operational planning tools. This system must distinguish between data needed for real-time care and that required for archival documentation of injuries and care provided. It must also enable both clinical optimization and trauma system learning without adding a burden to providers. Investments in real-time data infrastructure, machine learning, and automated sensing are necessary to maximize survivability in LSCO. Without this transformation, the military trauma system risks delays in care, degradation in outcomes, and reduced operational effectiveness. Real-time data are essential for modern combat casualty care and future mission success.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助zyw采纳,获得10
1秒前
5秒前
闪闪映易完成签到,获得积分10
7秒前
7秒前
8秒前
李承月应助hyhyhyhy采纳,获得10
8秒前
8秒前
8秒前
蛋黄派我来看看完成签到,获得积分10
10秒前
GZ发布了新的文献求助10
11秒前
聪慧芷巧发布了新的文献求助10
11秒前
12秒前
12秒前
霍师傅发布了新的文献求助10
14秒前
黄东胜发布了新的文献求助10
14秒前
庾摇伽完成签到 ,获得积分10
14秒前
Ashmitte完成签到 ,获得积分10
15秒前
从容晓凡发布了新的文献求助10
15秒前
Cathy_Durham完成签到,获得积分10
16秒前
lululu完成签到 ,获得积分10
17秒前
Ava应助GZ采纳,获得10
18秒前
脑洞疼应助GZ采纳,获得10
18秒前
20秒前
zyw发布了新的文献求助10
26秒前
聪慧芷巧发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
pege完成签到,获得积分10
29秒前
kami完成签到 ,获得积分10
30秒前
科研通AI5应助hyhyhyhy采纳,获得10
30秒前
李健的粉丝团团长应助ddm采纳,获得10
32秒前
万能图书馆应助ddm采纳,获得10
32秒前
香蕉觅云应助ddm采纳,获得10
32秒前
丘比特应助ddm采纳,获得10
32秒前
GZ发布了新的文献求助10
32秒前
pege发布了新的文献求助10
33秒前
34秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4441860
求助须知:如何正确求助?哪些是违规求助? 3913282
关于积分的说明 12152925
捐赠科研通 3560967
什么是DOI,文献DOI怎么找? 1954849
邀请新用户注册赠送积分活动 994591
科研通“疑难数据库(出版商)”最低求助积分说明 889905