Moving from exploratory to confirmatory network analysis: An evaluation of structural equation modeling fit indices and cutoff values in network psychometrics.

结构方程建模 切断 心理测量学 验证性因素分析 心理学 项目反应理论 统计 拟合优度 计量经济学 数学 临床心理学 物理 量子力学
作者
Xinkai Du,Nora Skjerdingstad,René Freichel,Omid V. Ebrahimi,Ria H. A. Hoekstra,Sacha Epskamp
出处
期刊:Psychological Methods [American Psychological Association]
被引量:1
标识
DOI:10.1037/met0000760
摘要

Network models are well-suited for phenomena detection, and most empirical network studies have been exploratory so far. Yet, due to the close connections between (Gaussian) networks and structural equation modeling (SEM), confirmatory testing and SEM fit indices are readily applicable to network modeling as well. However, no study to date has evaluated how SEM fit indices perform in confirmatory network analysis (CNA), and what criteria should be applied. This study examined the applicability of SEM fit indices and their conventional cutoff values in CNA. We employed a panel graphical autoregressive model for its generalizability to network models in both cross-sectional (Gaussian graphical models) and N = 1 time-series cases (graphical autoregressive models). Using simulations, we analyzed the performance of fit indices to test hypothesized network structures and evaluate stationarity, under varying number of variables (nodes), sample sizes, and measurement waves. Most fit indices performed well, except that Type I incremental fit indices showed high false rejection rates. Conventional SEM cutoffs are largely generalizable to CNA as preliminary assessment criteria when dynamical cutoffs are unavailable. However, we recommend stricter cutoff values (e.g., 0.03/0.04 for the root-mean-square error of approximation [RMSEA] and 0.96/0.97 for incremental fit indices) in hypothesis testing or direct replication studies if researchers aim for more precise testing or exact replications. For detecting network structure non-stationarity, stricter RMSEA cutoffs (0.03/0.04) are advised. This study validates the use of SEM fit criteria for confirmatory network psychometrics and encourages theory-testing and replication studies in network research, providing practical recommendations for using SEM fit indices in confirmatory network testing. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
檀木居然完成签到 ,获得积分10
刚刚
现代绮玉发布了新的文献求助10
刚刚
Jane完成签到,获得积分10
1秒前
乔治韦斯莱完成签到 ,获得积分10
1秒前
倒霉兔子完成签到,获得积分0
1秒前
zzzzzz发布了新的文献求助10
1秒前
seven完成签到,获得积分10
1秒前
2秒前
2秒前
唠叨的曼易完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
跑赢兔子完成签到,获得积分10
3秒前
小胡同学给小胡同学的求助进行了留言
4秒前
4秒前
加油发布了新的文献求助10
5秒前
海藻发布了新的文献求助10
6秒前
6秒前
浑灵安发布了新的文献求助10
6秒前
yiwangwuqian发布了新的文献求助10
7秒前
Cker完成签到,获得积分10
7秒前
Surge发布了新的文献求助10
7秒前
跑赢兔子发布了新的文献求助10
7秒前
an完成签到,获得积分10
7秒前
superspace发布了新的文献求助10
8秒前
8秒前
Awake完成签到,获得积分10
8秒前
骆驼完成签到,获得积分10
8秒前
yznfly应助gyusbjshaxb采纳,获得40
10秒前
卿落完成签到,获得积分10
10秒前
10秒前
欣慰冬亦完成签到 ,获得积分10
10秒前
10秒前
Adrian完成签到,获得积分20
10秒前
meatball1982发布了新的文献求助10
11秒前
小蘑菇应助lxl采纳,获得10
11秒前
淡淡的白羊完成签到 ,获得积分10
12秒前
张子怡完成签到,获得积分10
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450850
求助须知:如何正确求助?哪些是违规求助? 4558731
关于积分的说明 14269293
捐赠科研通 4482384
什么是DOI,文献DOI怎么找? 2455156
邀请新用户注册赠送积分活动 1445888
关于科研通互助平台的介绍 1422062