An Interpretable Artificial Intelligence System for Crohn's Disease Ulcer Identification and Grading on Double‐Balloon Enteroscopy Images

医学 肠镜检查 分级(工程) 克罗恩病 粪钙保护素 医学诊断 人工智能 结肠镜检查 疾病 炎症性肠病 内窥镜检查 内科学 放射科 胃肠病学 钙蛋白酶 结直肠癌 计算机科学 土木工程 癌症 工程类
作者
Qiuyuan Liu,Wanqing Xie,Aodi Wang,Wei Han,Yong Zhu,Jing Hu,Pengcheng Liang,Juan Wu,Xiaofeng Liu,Xiaodong Yang,Baoliang Zhang,Nannan Zhu,Bingqing Bai,Yiqing Mei,Zhen Liang,Mingmei Cheng,Mei Qiao
出处
期刊:United European gastroenterology journal [Wiley]
标识
DOI:10.1002/ueg2.70068
摘要

ABSTRACT Background Crohn's disease (CD) is an incurable inflammatory bowel disease that can lead to a variety of complications and requires lifelong treatment. However, the diagnosis and management of Crohn's disease exhibit high rates of misdiagnosis and missed diagnoses, along with significant variability, among primary care facilities and novice endoscopists. Therefore, we established an interpretable artificial intelligence (AI) system using double‐balloon enteroscopy to facilitate Crohn's disease ulcer identification and grading. Objective To develop an interpretable AI system for the identification and grading of Crohn's disease ulcer images, offering bounding box localization for visual interpretability and factor‐specific grading explanations for each ulcer to improve assessment performance. Methods We constructed a region and grading model of individual ulcers based on the YOLO‐v5 algorithm. By analyzing the predicted results of all ulcers in each image, the clinical interpretation for the screening and assessment of Crohn's disease ulcer images was further achieved. To evaluate the system, we prepared the training and validation datasets (17,036 double‐balloon enteroscopy images, 558 patients) and further collected a test cohort (2018 images, 70 patients) and an external validation set. A further reader study was conducted on the internal test set in which nine endoscopists participated to evaluate the auxiliary effectiveness of the explainable system. Results The Crohn's disease ulcer image detection sensitivity and area under the curve (AUC) were 91.8% and 0.949. The accuracies in assessing the severity of Crohn's disease ulcer images on three factors (size/ulcerated surface/depth) were 94.1%/92.5%/93.0%, respectively. With the system's support of visualized and analyzable predictions, junior endoscopists improved their Crohn's disease ulcer image recognition sensitivity by 12.7% and their accuracy and consistency of severity assessment by 26% and 27.4%. Conclusion The AI system outperformed general endoscopists in approaching expert‐level proficiency in Crohn's disease ulcer identification and assessment. Its transparency in decision‐making facilitated integration into clinical workflows, enhancing trust and consistency among endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
刚刚
刚刚
伶俐雪曼完成签到,获得积分10
刚刚
Mine发布了新的文献求助10
刚刚
1秒前
1秒前
小蘑菇应助恩恩灬采纳,获得10
1秒前
qccccc发布了新的文献求助10
1秒前
2秒前
Owen应助王厚旺采纳,获得10
2秒前
zyzhnu完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
2秒前
山山发布了新的文献求助10
2秒前
洁洁完成签到,获得积分10
3秒前
wisher发布了新的文献求助10
3秒前
微微一笑完成签到,获得积分10
3秒前
yydragen应助beet采纳,获得30
3秒前
努力乘凉发布了新的文献求助10
4秒前
4秒前
4秒前
Z1Z11Z完成签到,获得积分10
4秒前
明1111完成签到,获得积分10
4秒前
魔幻的土豆泥完成签到,获得积分10
5秒前
5秒前
CYJ发布了新的文献求助10
5秒前
5秒前
zhanzhanzhan完成签到,获得积分10
5秒前
yyc发布了新的文献求助10
6秒前
6秒前
shasha发布了新的文献求助10
6秒前
勤奋的凌翠完成签到 ,获得积分10
7秒前
7秒前
lxy完成签到,获得积分10
7秒前
7秒前
Huobol完成签到,获得积分10
7秒前
zxnju发布了新的文献求助10
8秒前
8秒前
lulu应助柚子采纳,获得10
8秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062091
求助须知:如何正确求助?哪些是违规求助? 3600785
关于积分的说明 11435265
捐赠科研通 3324099
什么是DOI,文献DOI怎么找? 1827591
邀请新用户注册赠送积分活动 898024
科研通“疑难数据库(出版商)”最低求助积分说明 818877