清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Short-Term Prediction of City Traffic Flow via Convolutional Deep Learning

期限(时间) 计算机科学 流量(计算机网络) 人工智能 深度学习 机器学习 计算机安全 量子力学 物理
作者
Stefano Bilotta,Enrico Collini,Paolo Nesi,Gianni Pantaleo
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 113086-113099 被引量:23
标识
DOI:10.1109/access.2022.3217240
摘要

Nowadays, traffic management and sustainable mobility are central topics for intelligent transportation systems (ITS). Thanks to new technologies, it is possible to collect real-time data to monitor the traffic situation and contextual information by sensors. An important challenge in ITS is the ability to predict road traffic flow data. The short-term predictions (10-60 minutes) of traffic flow data is a complex nonlinear task that has been the subject of many research efforts in past few decades. Accessing traffic flow data is mandatory for a large number of applications that have to guarantee a high level of services such as traffic flow analysis, traffic flow reconstruction, which in their turn are used to compute predictions needed to perform what-if analysis, forecast routing, conditioned routing, predictions of pollutant, etc. This paper proposes a solution for short-term prediction of traffic flow data by using a architecture capable to exploit Convolutional Bidirectional Deep Long Short Term Memory neural networks (CONV-BI-LSTM). The solution adopts a different architecture and features, so as to overcome the state-of-the-art solutions and provides precise predictions addressing traffic flow data in cities, which are tendentially very noisy with respect to the ones measured in high-speed roads, the latter being the validation context for the majority of state-of-the-art solutions. The proposed solution has been developed and validated in the city context and data via Sii-Mobility, a smart city mobility and transport national project and it is currently in use in other contexts such as in Snap4City PCP EC, TRAFAIR CEF, and REPLICATE H2020 SCC1, and it is operative in those areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坑坑发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
无花果应助TSTL采纳,获得30
10秒前
13秒前
zjq完成签到 ,获得积分10
25秒前
情怀应助坑坑采纳,获得10
27秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
坑坑发布了新的文献求助10
39秒前
40秒前
个性松完成签到 ,获得积分10
40秒前
45秒前
Jasper应助坑坑采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
CipherSage应助科研通管家采纳,获得10
56秒前
今后应助科研通管家采纳,获得10
57秒前
量子星尘发布了新的文献求助10
57秒前
义气雁完成签到 ,获得积分10
1分钟前
如意2023完成签到 ,获得积分10
1分钟前
长卿123完成签到,获得积分10
1分钟前
虚心念桃完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
坑坑发布了新的文献求助10
1分钟前
粗犷的芝完成签到 ,获得积分10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
大模型应助坑坑采纳,获得10
2分钟前
领导范儿应助坑坑采纳,获得10
2分钟前
牛牛完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
坑坑发布了新的文献求助10
2分钟前
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
坑坑发布了新的文献求助10
2分钟前
wushang完成签到 ,获得积分10
2分钟前
future完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864031
求助须知:如何正确求助?哪些是违规求助? 3406317
关于积分的说明 10648984
捐赠科研通 3130211
什么是DOI,文献DOI怎么找? 1726322
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990