An MRI-based Radiomics Approach to Improve Breast Cancer Histological Grading

医学 乳腺癌 分级(工程) 逻辑回归 无线电技术 比例危险模型 危险分层 肿瘤科 内科学 队列 放射科 癌症 工程类 土木工程
作者
Meng Jiang,Chang-li Li,Xiaomao Luo,Zhi-Rui Chuan,Ruixue Chen,Chao-Ying Jin
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (9): 1794-1804 被引量:4
标识
DOI:10.1016/j.acra.2022.12.014
摘要

Rationale and Objectives Nottingham histological grade (NHG) 2 breast cancer has an intermediate risk of recurrence, which is not informative for therapeutic decision-making. We sought to develop and independently validate an MRI-based radiomics signature (Rad-Grade) to improve prognostic re-stratification of NHG 2 tumors. Materials and Methods Nine hundred-eight subjects with invasive breast cancer and preoperative MRI scans were retrospectively obtained. The NHG 1 and 3 tumors were randomly split into training and independent test cohort, with the NHG 2 as the prognostic validation set. From MRI image features, a radiomics-based signature predictive of the histological grade was built by use of the LASSO logistic regression algorithm. The model was developed for identifying NHG 1 and 3 radiological patterns, followed with re-stratification of NHG 2 tumors into Rad-Grade (RG)2-low (NHG 1-like) and RG2-high (NHG 3-like) subtypes using the learned patterns, and the prognostic value was assessed in terms of recurrence-free survival (RFS). Results The Rad-Grade showed independent prognostic value for re-stratification of NHG 2 tumors, where RG2-high had an increased risk for recurrence (HR 2.20, 1.10–4.40, p = 0.026) compared with RG2-low after adjusting for established risk factors. RG2-low shared similar phenotypic characteristics and RFS outcomes with NHG 1, and RG2-high with NHG 3, revealing that the model captures radiomic features in NHG 2 that are associated with different aggressiveness. The prognostic value of Rad-Grade was further validated in the NHG2 ER+ (HR 2.53, 1.13–5.56, p = 0.023) and NHG 2 ER+LN– (HR 5.72, 1.24–26.44, p = 0.025) subgroups, and in specific treatment contexts. Conclusion The radiomics-based re-stratification of NHG 2 tumors offers a cost-effective promising alternative to gene expression profiling for tumor grading and thus may improve clinical decisions. Nottingham histological grade (NHG) 2 breast cancer has an intermediate risk of recurrence, which is not informative for therapeutic decision-making. We sought to develop and independently validate an MRI-based radiomics signature (Rad-Grade) to improve prognostic re-stratification of NHG 2 tumors. Nine hundred-eight subjects with invasive breast cancer and preoperative MRI scans were retrospectively obtained. The NHG 1 and 3 tumors were randomly split into training and independent test cohort, with the NHG 2 as the prognostic validation set. From MRI image features, a radiomics-based signature predictive of the histological grade was built by use of the LASSO logistic regression algorithm. The model was developed for identifying NHG 1 and 3 radiological patterns, followed with re-stratification of NHG 2 tumors into Rad-Grade (RG)2-low (NHG 1-like) and RG2-high (NHG 3-like) subtypes using the learned patterns, and the prognostic value was assessed in terms of recurrence-free survival (RFS). The Rad-Grade showed independent prognostic value for re-stratification of NHG 2 tumors, where RG2-high had an increased risk for recurrence (HR 2.20, 1.10–4.40, p = 0.026) compared with RG2-low after adjusting for established risk factors. RG2-low shared similar phenotypic characteristics and RFS outcomes with NHG 1, and RG2-high with NHG 3, revealing that the model captures radiomic features in NHG 2 that are associated with different aggressiveness. The prognostic value of Rad-Grade was further validated in the NHG2 ER+ (HR 2.53, 1.13–5.56, p = 0.023) and NHG 2 ER+LN– (HR 5.72, 1.24–26.44, p = 0.025) subgroups, and in specific treatment contexts. The radiomics-based re-stratification of NHG 2 tumors offers a cost-effective promising alternative to gene expression profiling for tumor grading and thus may improve clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王王完成签到 ,获得积分10
2秒前
mangata完成签到,获得积分10
3秒前
昔昔完成签到 ,获得积分10
4秒前
大胆的弼完成签到,获得积分10
5秒前
爆炸的西兰花完成签到,获得积分20
5秒前
Blank完成签到 ,获得积分10
6秒前
狂野白梅发布了新的文献求助10
6秒前
mangata发布了新的文献求助10
7秒前
Sean完成签到 ,获得积分10
9秒前
9秒前
Fiveoreo发布了新的文献求助10
9秒前
黄迪迪完成签到 ,获得积分10
10秒前
小煜哥发布了新的文献求助10
13秒前
ganzhongxin完成签到,获得积分10
18秒前
龙龙不卷完成签到 ,获得积分10
19秒前
机灵的友儿完成签到 ,获得积分10
24秒前
zero完成签到,获得积分10
28秒前
按照国际惯例完成签到 ,获得积分10
31秒前
孝顺的青枫完成签到,获得积分10
37秒前
狂奔的酸笋完成签到,获得积分10
38秒前
淡定水杯完成签到,获得积分10
39秒前
40秒前
lilil完成签到,获得积分10
43秒前
klemens发布了新的文献求助10
45秒前
48秒前
CipherSage应助chaojia_niu采纳,获得10
49秒前
50秒前
英俊的如霜完成签到,获得积分10
51秒前
mooon发布了新的文献求助10
53秒前
双马尾小男生2完成签到,获得积分10
54秒前
shuangyanli完成签到,获得积分10
55秒前
jenningseastera应助高兴纸鹤采纳,获得10
59秒前
双马尾小男生完成签到,获得积分10
1分钟前
1分钟前
chaojia_niu完成签到,获得积分10
1分钟前
1分钟前
panjunlu发布了新的文献求助10
1分钟前
xiaoxiaoshu完成签到,获得积分10
1分钟前
mooon完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783189
求助须知:如何正确求助?哪些是违规求助? 3328507
关于积分的说明 10236843
捐赠科研通 3043629
什么是DOI,文献DOI怎么找? 1670622
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126