已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A generic framework for mix design of geopolymer for soil stabilization: Composition-informed machine learning model

聚合物 地聚合物水泥 计算机科学 机器学习 抗压强度 材料科学 复合材料
作者
Jiaqi Zhang,Clarence Edward Choi,Zhengyu Liang,Ruoying Li
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:170: 106322-106322 被引量:3
标识
DOI:10.1016/j.compgeo.2024.106322
摘要

Geopolymer has emerged as an environmentally sustainable alternative to cement for soil stabilization. Although machine learning technology exhibits great potential in designing the geopolymer, its current applications are limited to specific types of geopolymer. This study introduces a composition-based method to develop a machine learning model that facilitates the mix design of diverse types of geopolymer. A unique dataset comprising 990 mix designs of geopolymer for soil stabilization was established. Based on this dataset, a composition-informed machine learning model was developed to predict the unconfined compressive strength of geopolymer-stabilized soils. By using the developed model, a generic framework for the mix design of diverse types of geopolymer is proposed. The performance of the developed model and the effectiveness of the mix designs derived from the proposed framework was evaluated by using datasets that are independent of the dataset established in this study. The results show that the developed model enables the reasonable predictions of the strength of geopolymer-stabilized soils. The mix designs formulated based on the proposed framework is comparable to those derived from experimental studies. The proposed framework can serve as a cost-effective and efficient toolkit for the mix design of diverse of types of geopolymer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助科研通管家采纳,获得150
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
4秒前
渣渣XM发布了新的文献求助10
8秒前
CodeCraft应助keloo123采纳,获得10
14秒前
14秒前
Lucas应助吃花生酱的猫采纳,获得10
14秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
华仔应助精灵夜雨采纳,获得10
19秒前
20秒前
在水一方应助安静青亦采纳,获得10
20秒前
顺利寄文发布了新的文献求助10
21秒前
21秒前
27秒前
28秒前
小蘑菇应助迷你的水绿采纳,获得10
29秒前
30秒前
30秒前
33秒前
快乐的青柏应助ouo采纳,获得10
35秒前
hua完成签到 ,获得积分10
36秒前
36秒前
安静青亦发布了新的文献求助10
36秒前
somebodyzou发布了新的文献求助10
39秒前
科目三应助zhongzhong采纳,获得10
41秒前
Lucas应助精灵夜雨采纳,获得10
42秒前
LJJ019发布了新的文献求助10
43秒前
45秒前
屿溡完成签到,获得积分10
48秒前
安静青亦完成签到,获得积分10
54秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881405
求助须知:如何正确求助?哪些是违规求助? 3423832
关于积分的说明 10736143
捐赠科研通 3148707
什么是DOI,文献DOI怎么找? 1737394
邀请新用户注册赠送积分活动 838811
科研通“疑难数据库(出版商)”最低求助积分说明 784107