DepressionMLP: A Multi-Layer Perceptron Architecture for Automatic Depression Level Prediction via Facial Keypoints and Action Units

计算机科学 人工智能 感知器 图层(电子) 动作(物理) 模式识别(心理学) 建筑 计算机视觉 人工神经网络 艺术 化学 物理 有机化学 量子力学 视觉艺术
作者
Mingyue Niu,Ya Li,Jianhua Tao,Xiuzhuang Zhou,Björn W. Schuller
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2024.3382334
摘要

Physiological studies have confirmed that there are differences in facial activities between depressed and healthy individuals. Therefore, while protecting the privacy of subjects, substantial efforts are made to predict the depression severity of individuals by analyzing Facial Keypoints Representation Sequences (FKRS) and Action Units Representation Sequences (AURS). However, those works has struggled to examine the spatial distribution and temporal changes of Facial Keypoints (FKs) and Action Units (AUs) simultaneously, which is limited in extracting the facial dynamics characterizing depressive cues. Besides, those works don't realize the complementarity of effective information extracted from FKRS and AURS, which reduces the prediction accuracy. To this end, we intend to use the recently proposed Multi-Layer Perceptrons with gating (gMLP) architecture to process FKRS and AURS for predicting depression levels. However, the channel projection in the gMLP disrupts the spatial distribution of FKs and AUs, leading to input and output sequences not having the same spatiotemporal attributes. This discrepancy hinders the additivity of residual connections in a physical sense. Therefore, we construct a novel MLP architecture named DepressionMLP. In this model, we propose the Dual Gating (DG) and Mutual Guidance (MG) modules. The DG module embeds cross-location and cross-frame gating results into the input sequence to maintain the physical properties of data to make up for the shortcomings of gMLP. The MG module takes the global information of FKRS (AURS) as a guidance mask to filter the AURS (FKRS) to achieve the interaction between FKRS and AURS. Experimental results on several benchmark datasets show the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小辣鸡完成签到,获得积分10
1秒前
shaodan发布了新的文献求助10
2秒前
kento发布了新的文献求助20
2秒前
橘子发布了新的文献求助10
2秒前
3秒前
852应助刘老哥6采纳,获得10
3秒前
wangang发布了新的文献求助10
4秒前
Librocoli发布了新的文献求助10
4秒前
conlensce发布了新的文献求助10
4秒前
liuyi发布了新的文献求助10
5秒前
orixero应助zhang采纳,获得10
5秒前
6秒前
可爱的函函应助Lsy采纳,获得10
6秒前
科研发布了新的文献求助10
6秒前
peiqi佩奇发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
snow_dragon完成签到 ,获得积分10
9秒前
9秒前
莎莎酱关注了科研通微信公众号
10秒前
Akim应助peiqi佩奇采纳,获得10
10秒前
海鲜毒物发布了新的文献求助10
10秒前
10秒前
10秒前
简单灵完成签到,获得积分10
10秒前
kimoki完成签到,获得积分10
10秒前
12秒前
anna1992发布了新的文献求助10
12秒前
12秒前
刘老哥6发布了新的文献求助10
13秒前
欢喜的小天鹅完成签到 ,获得积分10
13秒前
Z丶发布了新的文献求助20
13秒前
13秒前
14秒前
14秒前
14秒前
清爽达完成签到 ,获得积分10
15秒前
anyon发布了新的文献求助10
15秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905873
求助须知:如何正确求助?哪些是违规求助? 3451467
关于积分的说明 10864696
捐赠科研通 3176771
什么是DOI,文献DOI怎么找? 1755014
邀请新用户注册赠送积分活动 848619
科研通“疑难数据库(出版商)”最低求助积分说明 791153