Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD

部分流量储备 计算机辅助设计 队列 胸痛 医学 放射科 心脏病学 冠状动脉疾病 曲线下面积 内科学 工程类 冠状动脉造影 心肌梗塞 工程制图
作者
Bangjun Guo,Mengchun Jiang,Xiang Guo,Chunxiang Tang,Jian Zhong,Mengjie Lu,Chunyu Liu,Xiao-Lei Zhang,Hongyan Qiao,Fan Zhou,Peng-Peng Xu,Yi Xue,Minwen Zheng,Yang Hou,Yining Wang,Jiayin Zhang,Bo Zhang,Dai‐Min Zhang,Lei Xu,Xiuhua Hu
出处
期刊:Science Bulletin [Elsevier BV]
卷期号:69 (10): 1472-1485 被引量:14
标识
DOI:10.1016/j.scib.2024.03.053
摘要

Currently, clinically available coronary CT angiography (CCTA) derived fractional flow reserve (CT-FFR) is time-consuming and complex. We propose a novel artificial intelligence-based fully-automated, on-site CT-FFR technology, which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional (3D) computational fluid dynamics. A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve (FFR) within 90 days were collected for diagnostic performance evaluation. For Cohort 2, a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed. In Cohort 3, the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated. The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level. Compared with the manually dependent CT-FFR techniques, the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1. This CT-FFR technique has a highly successful (> 99%) calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain. Thus, the novel artificial intelligence-based fully automated, on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jammie发布了新的文献求助10
刚刚
chr发布了新的文献求助10
刚刚
花花发布了新的文献求助10
1秒前
狗不理发布了新的文献求助10
1秒前
落后的问丝关注了科研通微信公众号
1秒前
Asuna发布了新的文献求助10
2秒前
2秒前
朱朱发布了新的文献求助10
3秒前
幸福大白发布了新的文献求助10
3秒前
叶123完成签到,获得积分10
4秒前
健壮念寒完成签到,获得积分20
4秒前
4秒前
4秒前
共享精神应助我是罗举办采纳,获得10
5秒前
7秒前
江湖护卫舰应助染墨采纳,获得10
8秒前
LYZSh发布了新的文献求助10
8秒前
激昂的青完成签到,获得积分10
8秒前
搞怪楼房发布了新的文献求助10
8秒前
hhhyyy发布了新的文献求助10
9秒前
chr完成签到,获得积分10
9秒前
刘倩完成签到,获得积分10
10秒前
MichaelQin发布了新的文献求助10
11秒前
赘婿应助靓丽的熠彤采纳,获得10
11秒前
11秒前
华仔应助GLN采纳,获得10
11秒前
11秒前
D.lon发布了新的文献求助10
11秒前
郑恩熙发布了新的文献求助10
12秒前
12秒前
加百莉发布了新的文献求助10
12秒前
共享精神应助wenpengyun采纳,获得10
13秒前
LuoYixiang完成签到,获得积分10
13秒前
14秒前
Zll完成签到,获得积分10
14秒前
14秒前
万能图书馆应助轩辕沛柔采纳,获得10
14秒前
Dallas发布了新的文献求助10
15秒前
shengChen发布了新的文献求助10
15秒前
风趣不正发布了新的文献求助10
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103