作者
Yibo Zhang,Zhuolun Han,Yizhang Guan,Yimin Liao,Jierui Xue,Guofeng Hu,Chee‐Keong Tan
摘要
Gallium oxide (Ga2O3), with its ultrawide bandgap, exceptional stability, and good optical properties, has demonstrated significant potential in high-power electronic devices, photodetectors, and high-energy radiation detection. However, its low carrier mobility and limited luminescence efficiency constrain its performance. Rare earth element (REE) doping, including europium (Eu), cerium (Ce), erbium (Er), and others, introduces localized states within the Ga2O3 bandgap, enhancing luminescence, scintillation, and catalytic activity, while enabling multi-functional applications through co-doping strategies. Therefore, the paper reviews the commonly employed REE-doped Ga2O3 synthesis methods (wet chemical methods, ALD, PLD, MBE, et al.) and the roles of REE dopants (Eu, Er, Tb, Ce, et al.) in luminescent and scintillation performance. Furthermore, the review highlights recent advances in REE-doped Ga2O3 for photoluminescence, electroluminescence, scintillation, photonic devices, and catalysis. These insights will guide breakthroughs in optoelectronics, radiation detection, and biomedicine applications.