雅罗维亚
分区(防火)
生物合成
代谢工程
虫草素
脂滴
发酵
化学
生物化学
酵母
脂质积聚
酶
作者
Xiyu Duan,Li-Ping Song,Qing Jin,Xiao-Na Yang,Hu‐Hu Liu,Chong Wang,Xiangyang Lu,Xiao‐Jun Ji,Zhi Wang,Yun Tian
标识
DOI:10.1021/acs.jafc.5c03654
摘要
Cordycepin, a physiologically active nucleoside compound with broad applications in healthcare, is biosynthesized in Cordyceps militaris through a protein complex formed by CmCns1 and CmCns2. To enhance cordycepin heterologous production in Yarrowia lipolytica, this study confirmed the colocalization of CmCns1 and CmCns2 on lipid droplets, with CmCns1 dominating this process by recruiting CmCns2 from the cytoplasm to lipid droplets via strong interactions. Critical lipid-droplet-targeting motifs within CmCns1 were identified. On this basis, an engineered strain YL-CD3 was developed by expanding the lipid droplets and CmCns3-NK compartmentalization. Then, the fermentation parameters were optimized to increase the yield of cordycepin to 2008.23 mg/L in shake flasks. Finally, fed-batch fermentation in a 2.4 L bioreactor for 144 h achieved 4780.75 mg/L (150.1 mg/OD600 and 66.57 mg/g glucose), marking the highest reported titer in Y. lipolytica. This work establishes Y. lipolytica as a high-potential platform for efficient cordycepin biosynthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI