析氧
法拉第效率
催化作用
甲酸
电催化剂
化学工程
甲醇
分解水
化学
电解
纳米材料基催化剂
电化学
材料科学
无机化学
电极
物理化学
电解质
光催化
有机化学
工程类
作者
Yu Pang,Hongdong Li,Ruotong Liu,Weizhou Wang,Rui Chang,Xiaofeng Tian,Tian Dong,Zhenhui Wang,Jianping Lai,Lei Wang
标识
DOI:10.1002/smtd.202500502
摘要
Abstract Electrochemical water splitting faces a major challenge due to the sluggish kinetics of the oxygen evolution reaction (OER). This study proposes an innovative strategy to replace OER with the thermodynamically favorable methanol oxidation reaction (MOR) while producing high‐value formic acid. The study develops a novel series of metallic ammonium phosphate electrocatalysts (NPOs·nH 2 O) through a facile chemical precipitation method, including the high‐entropy FeCoNiCuMn‐NPO·nH 2 O. The unique superstructure coupled with multi‐element synergy enables abundant active site exposure, optimized electronic configuration, and enhanced charge transfer capability. Remarkably, the high‐entropy catalyst demonstrates exceptional bi‐functional performance: achieving ultralow overpotentials of 204/289 mV at 10/100 mA cm −2 for OER, and requiring only 1.3 V versus RHE to deliver 10 mA cm −2 in MOR‐assisted electrolysis. Particularly, it exhibits high normalized activity (electrochemically active surface area activity: 16.6 mA cm −2 , mass activity: 980 mA mg −1 ) with 94% Faradaic efficiency for formic acid production. The catalyst maintains >120 h stability at industrial‐level current density (100 mA cm −2 ), outperforming most reported transition metal‐based electrocatalysts. This work establishes a new paradigm for designing high‐entropy electrocatalysts through structural engineering and composition optimization, providing crucial insights for sustainable energy conversion and biomass valorization.
科研通智能强力驱动
Strongly Powered by AbleSci AI