亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction

计算机科学 深度学习 人工智能 集成学习 熵(时间箭头) 机器学习 数据挖掘 量子力学 物理
作者
Xue Wei,Ning Qiao,Kuiyang Che,Zhaowei Liu,Hui Li,Shikai Guo
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btaf078
摘要

S-sulfhydration, a crucial post-translational protein modification, is pivotal in cellular recognition, signaling processes, and the development and progression of cardiovascular and neurological disorders, so identifying S-sulfhydration sites is crucial for studies in cell biology. Deep learning shows high efficiency and accuracy in identifying protein sites compared to traditional methods that often lack sensitivity and specificity in accurately locating nonsulfhydration sites. Therefore, we employ deep learning methods to tackle the challenge of pinpointing S-sulfhydration sites. In this work, we introduce a deep learning approach called Sul-BertGRU, designed specifically for predicting S-sulfhydration sites in proteins, that integrates multi-directional gated recurrent unit (GRU) and BERT. First, Sul-BertGRU proposes an information entropy-enhanced BERT (IE-BERT) to preprocess protein sequences and extract initial features. Subsequently, confidence learning is employed to eliminate potential S-sulfhydration samples from the nonsulfhydration samples and select reliable negative samples. Then, considering the directional nature of the modification process, protein sequences are categorized into left, right, and full sequences centred on cysteines. We build a multi-directional GRU to enhance the extraction of directional sequence features and model the details of the enzymatic reaction involved in S-sulfhydration. Ultimately, we apply a parallel multi-head self-attention mechanism alongside a convolutional neural network (CNN) to deeply analyze sequence features that might be missed at a local level. Sul-BertGRU achieves sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, and area under the curve scores of 85.82%, 68.24%, 74.80%, 77.44%, 55.13%, and 77.03%, respectively. Sul-BertGRU demonstrates exceptional performance and proves to be a reliable method for predicting protein S-sulfhydration sites. The source code and data are available at https://github.com/Severus0902/Sul-BertGRU/. Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助笑面客采纳,获得10
6秒前
科研通AI5应助anki采纳,获得10
10秒前
16秒前
17秒前
19秒前
Lgenius发布了新的文献求助10
21秒前
小二郎应助xxxalal采纳,获得10
22秒前
笑面客发布了新的文献求助10
23秒前
Yeung发布了新的文献求助30
25秒前
28秒前
星际舟完成签到,获得积分10
28秒前
30秒前
wanci应助Lgenius采纳,获得10
32秒前
33秒前
稳重岩完成签到 ,获得积分10
34秒前
ding应助知风草采纳,获得10
34秒前
朱文韬发布了新的文献求助10
35秒前
Yeung完成签到,获得积分10
39秒前
无花果应助LTRRRRRR_04采纳,获得10
44秒前
Lgenius完成签到,获得积分10
45秒前
ritata完成签到 ,获得积分10
46秒前
52秒前
54秒前
LTRRRRRR_04发布了新的文献求助10
55秒前
anki发布了新的文献求助10
58秒前
绾妤完成签到 ,获得积分10
58秒前
LTRRRRRR_04完成签到,获得积分10
1分钟前
1分钟前
坦率大米完成签到,获得积分20
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Brain完成签到 ,获得积分10
1分钟前
kang关注了科研通微信公众号
1分钟前
1分钟前
发量多的秃子完成签到,获得积分10
1分钟前
懂事的梦游者完成签到,获得积分20
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795529
求助须知:如何正确求助?哪些是违规求助? 3340541
关于积分的说明 10300468
捐赠科研通 3057085
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762491