Quantum‐Confined Boron Nitride Quantum Dots–Polyimide Composites Achieve Exceptional Dielectric Strength, Energy Density, and Thermal Dissipation at Ultralow Loading

作者
Yufan Li,Tianhua Wang,Jiaqi Zhao,Shuangshuang Wang,Yanhu Zhan,Wenjing Zhang,Zheng Xie,Shao‐Long Zhong,Zhi‐Min Dang,Jun‐Wei Zha,Yun Zhao,Mingjie Zhang,Janet S. S. Wong,Wei Liu,Yuchao Li,Yuchao Li,Yuchao Li
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202519408
摘要

Abstract Polymer dielectric materials are highly promising for capacitive energy storage in electronics and pulsed‐power devices thanks to their flexibility, low loss, high voltage tolerance, and cost‐effectiveness. Yet balancing dielectric constant and breakdown strength, managing space charge accumulation and thermal dissipation, and maintaining electrical reliability and long‐term aging remain formidable challenges, especially for high‐power applications. In this work, by embedding just 0.06 wt.% boron nitride quantum dots (BNQDs) into polyimide (PI), this study harnesses quantum confinement, enhances interfacial polarization, and a Coulomb‑blockade effect to simultaneously boost dielectric properties, energy storage, cycling stability, and thermal dissipation. The resulting BNQDs/PI dielectric films exhibit exceptional energy storage densities of 9.57 J·cm −3 ( η = 90%) at room temperature and 5.46 J·cm −3 ( η = 86%) at 200 °C under its maximum breakdown strength of 632.0 and 591.9 kV·mm −1 , respectively, surpassing most reported PI systems. Moreover, the thermal conductivity increases by 121.7% (to 0.229 W·(m·K) −1 ) compared to pristine PI, effectively mitigating heat accumulation and ensuring cycling reliability as confirmed by both experiments and simulations. Acting as efficient electron traps of BNQDs, this synergistic integration addresses key electrical, thermal, and reliability bottlenecks, offering a compelling route toward advanced, high‐power dielectric systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌衣白马发布了新的文献求助10
1秒前
乐乐应助yyt采纳,获得10
1秒前
1秒前
1秒前
July发布了新的文献求助10
2秒前
简单的元珊完成签到,获得积分10
2秒前
4秒前
听风发布了新的文献求助10
4秒前
认真向彤完成签到,获得积分20
5秒前
5秒前
5秒前
wuyoucaoxin完成签到,获得积分10
6秒前
FashionBoy应助阿冲采纳,获得10
6秒前
deng完成签到 ,获得积分10
6秒前
充电宝应助调皮修洁采纳,获得10
6秒前
英姑应助LL采纳,获得10
7秒前
Chris完成签到,获得积分10
7秒前
7秒前
丘比特应助NeoWu采纳,获得10
8秒前
9秒前
9秒前
无极微光应助ZhouLu采纳,获得20
11秒前
无情夏槐完成签到,获得积分10
12秒前
乌衣白马完成签到,获得积分10
12秒前
zi发布了新的文献求助10
12秒前
ppc发布了新的文献求助10
12秒前
乐乐应助yyy111采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
优秀山水完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Azhar完成签到,获得积分10
17秒前
害怕的惜文完成签到,获得积分10
18秒前
18秒前
舫舟游太湖完成签到,获得积分20
19秒前
斯文败类应助棋士采纳,获得10
20秒前
四季安完成签到 ,获得积分10
20秒前
20秒前
21秒前
科研通AI6应助July采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700508
求助须知:如何正确求助?哪些是违规求助? 5138755
关于积分的说明 15230779
捐赠科研通 4855638
什么是DOI,文献DOI怎么找? 2605400
邀请新用户注册赠送积分活动 1556788
关于科研通互助平台的介绍 1514793